Шрифт:
Через двести с лишним лет после Ньютона Эйнштейн столкнулся с теми же проблемами, но в завуалированной форме. В 1915 г. Вселенная представлялась довольно уютным местом и состояла, как считалось, из одной-единственной статичной галактики под названием Млечный Путь. Эта светлая полоса через все небо содержит миллиарды звезд. Однако Эйнштейн, начав решать свои уравнения, обнаружил кое-что неожиданное и тревожное, когда представил звезды и пылевые облака в виде однородного газа, заполняющего Вселенную. К ужасу своему, он увидел, что такая Вселенная динамична и предпочитает расширяться или сжиматься, но никогда не бывает стабильной. Более того, очень скоро он обнаружил, что тонет в трясине космологических вопросов, столетиями ставивших в тупик философов и физиков, подобных Ньютону. Конечная Вселенная не может оставаться стабильной под действием гравитации.
Столкнувшись, как до него Ньютон, с динамической – сжимающейся или расширяющейся – Вселенной, Эйнштейн пока не был готов отказаться от господствующей картины вечной статичной Вселенной. Эйнштейн-революционер был еще недостаточно революционен, чтобы принять тот факт, что Вселенная расширяется или же имеет начало. Он предложил достаточно слабое решение. В 1917 г. ввел в свои уравнения своеобразный «подгоночный член» – «космологическую константу». Этот коэффициент постулировал существование отталкивающей антигравитации, уравновешивающей силу гравитационного притяжения. Так одним росчерком пера Эйнштейн сделал Вселенную статичной.
Чтобы такой фокус стал возможным, он предположил, что общая ковариантность – ведущий математический принцип, лежащий в основе общей теории относительности, – допускает существование двух возможных общековариантных объектов: кривизны Риччи (которая образует фундамент общей теории относительности) и объема пространства-времени. Именно поэтому в его уравнения можно было добавить второй член, не нарушающий общей ковариантности и пропорциональный объему Вселенной. Иными словами, космологическая константа приписывала энергию пустому пространству. Эта антигравитационная составляющая, известная сегодня как темная энергия, представляет собой энергию чистого вакуума. Она способна расталкивать галактики или стягивать их воедино. Величину космологической константы Эйнштейн подобрал такую, чтобы она в точности компенсировала сжатие, вызванное гравитацией так, чтобы Вселенная в целом стала статичной. Ему это не нравилось, поскольку попахивало математическим надувательством, но выбора, если он хотел сохранить статическую Вселенную, у него не было. (Прошло еще 80 лет, прежде чем астрономы обнаружили наконец свидетельства существования космологической константы; в настоящее время она считается основным источником энергии во Вселенной.)
В последующие годы, когда ученые начали находить другие решения уравнений Эйнштейна, загадка лишь усложнилась. В 1917 г. голландский физик Виллем де Ситтер заметил, что уравнения Эйнштейна обладают одним странным свойством: Вселенная, вообще лишенная всякого вещества, расширяется! Все, что было для этого необходимо, – космологическая константа – энергия вакуума, которая, собственно, и должна была обеспечивать существование такой Вселенной. Это встревожило Эйнштейна – ведь он, как Мах до него, все еще верил, что природа пространства-времени должна определяться вещественным содержанием Вселенной. Но здесь фигурировала Вселенная, которая расширялась вообще без всякого вещества, и для этого ей достаточно было одной только темной энергии.
Последние радикальные шаги в этом направлении сделали советский математик Александр Фридман в 1922 г. и бельгийский священник Жорж Леметр в 1927 г.; они показали, что расширяющаяся Вселенная получается из уравнений Эйнштейна естественным образом. Фридман получил решение уравнений Эйнштейна, начинавшееся с гомогенной изотропной Вселенной, радиус которой то увеличивается, то уменьшается. (К несчастью, Фридман умер в 1925 г. в Ленинграде от тифа, не успев завершить работу.) В картине Фридмана – Леметра в зависимости от начальной плотности Вселенной существуют три возможных решения. Если плотность Вселенной больше определенной критической величины, то ее расширение со временем будет остановлено гравитацией, и Вселенная начнет сжиматься. (Критическая плотность примерно соответствует десяти атомам водорода на кубический метр.) В такой Вселенной общая кривизна положительна (напомним, что положительную кривизну имеет, к примеру, сфера). Если плотность меньше критической величины, то силы гравитации окажется недостаточно, чтобы остановить расширение Вселенной, и она будет расширяться до бесконечности. (В конце концов, Вселенная остынет почти до абсолютного нуля; это явление известно как «большое замерзание».) Кривизна такой Вселенной отрицательна (отрицательную кривизну имеют, к примеру, седловидная поверхность или рожок). Наконец, существует возможность того, что плотность Вселенной окажется в точности равна критической (при этом она тоже будет бесконечно расширяться). В этой Вселенной кривизна равна нулю, то есть она плоская. Получается, что судьбу Вселенной, в принципе, можно определить, просто измерив ее среднюю плотность.
Новые решения сбивали с толку, поскольку теперь в наличии имелось по крайней мере три космологические модели, описывающие развитие Вселенной (Эйнштейна, де Ситтера и Фридмана – Леметра). Вопрос пребывал в подвешенном состоянии до 1929 г., пока его не разрешил астроном Эдвин Хаббл, чем потряс основы астрономии. Он первым начал разрушать теорию Вселенной с одной-единственной Галактикой, продемонстрировав существование других галактик далеко за пределами Млечного Пути [22] . Вселенная, вместо уютного сообщества из сотни миллиардов звезд, собранных в одну Галактику, теперь содержала миллиарды галактик с миллиардами звезд в каждой. Всего за один год «население» Вселенной испытало поистине взрывной рост. Хаббл обнаружил, что потенциально во Вселенной существуют миллиарды иных галактик, из которых ближайшей к нам является галактика в созвездии Андромеды на расстоянии около 2 млн световых лет от Земли. (Надо сказать, что слово «галактика» происходит от греческого слова «молоко»; греки считали, что Млечный Путь – это молоко, пролитое богами на ночное небо.)
22
Это произошло несколько раньше: Хаббл предположил фундаментальное различие между газопылевыми туманностями и настоящими галактиками в 1922 г. и смог доказать существование последних, разрешив несколько галактик на звезды, к 1926 г. – Прим. пер.
Одного этого шокирующего заявления было бы достаточно, чтобы обеспечить Хабблу славу одного из гигантов астрономии. Но Хаббл пошел еще дальше. В 1928 г. он совершил судьбоносную поездку в Голландию и встретился там с де Ситтером, который утверждал, что общая теория относительности Эйнштейна предсказывает расширяющуюся Вселенную с очень простым соотношением между расстоянием и красным смещением. Чем дальше галактика находится от нас, тем быстрее она должна удаляться. (Это красное смещение не следует путать с гравитационным красным смещением, которое рассматривал Эйнштейн в 1915 г. Красное смещение в спектре галактик возникает из-за того, что галактики удаляются от Земли в расширяющейся Вселенной. Если желтая звезда, к примеру, движется от нас прочь, то скорость ее света остается постоянной, а вот длина волны этого света «растягивается», так что цвет звезды слегка краснеет. Аналогично, если желтая звезда приближается к Земле, длина волны ее света сжимается, как меха аккордеона, а ее цвет смещается в сторону синего.)
Вернувшись в обсерваторию Маунт-Вилсон, Хаббл начал систематическое определение красного смещения различных галактик, проверяя, существует ли такая корреляция. Ему было известно, что еще в 1912 г. Весто Мелвин Слайфер показал: некоторые отдаленные туманности удаляются от Земли, демонстрируя красное смещение. Хаббл теперь систематически рассчитывал красное смещение далеких галактик и в результате обнаружил, что эти галактики тоже удаляются от Земли – иными словами, что Вселенная расширяется с фантастической скоростью. Затем он обнаружил, что его данные укладываются в гипотезу де Ситтера. Сегодня это называется «законом Хаббла»: чем быстрее галактика удаляется от Земли, тем дальше она находится (и наоборот).