Шрифт:
Не все достижения антропогенеза, имеющие отношение к человеческому разуму, имеют ценность для современных специалистов, работающих над проблемой эволюционного развития искусственного интеллекта. В дело идет лишь незначительная часть того, что получилось в итоге естественного отбора на Земле. Например, проблемы, которые люди не могут не принимать во внимание, являются результатом лишь незначительных эволюционных усилий. В частности, поскольку мы можем питать наши компьютеры электричеством, у нас нет необходимости заново изобретать молекулы системы клеточной энергетической экономики для создания разумных машин – а ведь на молекулярную эволюцию метаболического механизма, вполне возможно, потребовалась значительная часть общего расхода мощности естественного отбора, находившейся в распоряжении эволюции на протяжении истории Земли {93} .
Существует концепция, что ключом к созданию ИИ является структура нервной системы, появившаяся меньше миллиарда лет назад {94} . Если мы примем данное положение, количество «экспериментов», необходимых для эволюции, значительно сократится. Сегодня в мире существует приблизительно (4–6) x 1030 прокариотов, но лишь 1019 насекомых и меньше 1010 представителей человеческого рода (кстати, численность населения накануне неолитической революции была на порядки меньше) {95} . Согласитесь, эти цифры не столь пугающи.
Однако для эволюционных алгоритмов требуется не только разнообразие вариантов, но и оценка приспособленности каждого из вариантов – обычно наиболее затратный компонент с точки зрения вычислительных ресурсов. В случае эволюции искусственного интеллекта для оценки приспособленности требуется, по всей видимости, моделирование нейронного развития, а также способности к обучению и познанию. Поэтому лучше не смотреть на общее число организмов со сложной нервной системой, а оценить количество нейронов в биологических организмах, которые нам, возможно, придется моделировать для расчета целевой функции эволюции. Грубую оценку можно сделать, обратившись к насекомым, которые доминируют в наземной биомассе (на долю одних только муравьев приходится 15–20 %) {96} . Объем головного мозга насекомых зависит от многих факторов. Чем насекомое крупнее и социальнее (то есть ведет общественный образ жизни), тем больше его мозг; например, у пчелы чуть меньше 106 нейронов, у дрозофилы – 105 нейронов, муравей со своими 250 тысячами нейронов находится между ними {97} . Мозг большинства более мелких насекомых содержит всего несколько тысяч нейронов. Предлагаю с предельной осторожностью остановиться на усредненном значении (105) и приравнять к дрозофилам всех насекомых (которых всего в мире – 1019), тогда суммарное число их нейронов составит 1024. Добавим еще порядок величины за счет ракообразных, птиц, рептилий, млекопитающих и т. д. – и получим 1025. (Сравним это с тем, что до возникновения сельского хозяйства на планете было меньше 107 человек, причем на каждого приходилось примерно 1011 нейронов – то есть в общей сложности сумма всех нейронов составляла меньше чем 1018, хотя человеческий мозг содержал – и содержит – намного больше синапсов.)
Вычислительные затраты на моделирование одного нейрона зависят от необходимой степени детализации модели. Для крайне простой модели нейрона, работающей в режиме реального времени, требуется примерно 1000 операций с плавающей запятой в секунду (далее – FLOPS). Для электро- и физиологически реалистичной модели Ходжкина – Хаксли нужно 1 200 000 FLOPS. Более сложная мультикомпонентная модель нейрона добавила бы два-три порядка величины, а модель более высокого уровня, оперирующая системами нейронов, требует на два-три порядка меньше операций на один нейрон, чем простые модели {98} . Если нам нужно смоделировать 1025 нейронов на протяжении миллиарда лет эволюции (это больше, чем срок существования нервных систем в их нынешнем виде) и мы позволим компьютерам работать над этой задачей в течение года, то требования к их вычислительной мощности попадут в диапазон 1031–1044 FLOPS. Для сравнения, самый сверхмощный компьютер в мире китайский Tianhe-2 (на сентябрь 2013 года) способен выдавать всего 3,39 x 1016 FLOPS. В последние десятилетия обычные компьютеры увеличивали свою производительность на порядок примерно раз в 6,7 года. Даже если вычислительная мощность станет расти по закону Мура в течение целого столетия, то это окажется недостаточным, чтобы преодолеть существующий разрыв. Использование более специализированных вычислительных систем или увеличение времени вычислений способны снизить требования к мощности всего на несколько порядков.
Оценка количества нейронов носит условный характер еще по одной причине. Природа, создавая человеческий разум, вряд ли ставила перед собой какую-то определенную задачу. Иными словами, целевая функция эволюционной системы отбирала организмы не только ради развития у них интеллекта или его предшественника – «конкретного мышления» {99} . Даже если организмы с лучшими способностями к обработке информации при определенных условиях извлекали дополнительные выгоды, то это обстоятельство не являлось главным фактором отбора особи, поскольку развитое мышление могло означать (и часто означало) возникновение дополнительных издержек: затрату большего количества энергии или более медленное созревание, – что перевешивало преимущества разумного поведения. Высокая смертность также снижала ценность интеллекта – чем короче средняя продолжительность жизни, тем меньше времени для того, чтобы «окупились» повышенные способности к обучению. Сниженное давление отбора замедляло распространение инноваций, основанных на интеллекте, и, как следствие, уменьшало возможность отбора последующих инноваций. Более того, эволюция могла тормозиться в локальных оптимумах, которые исследователи в состоянии заметить и обойти за счет изменения баланса между поиском и памятью или за счет плавного повышения сложности тестов на интеллект {100} . Как уже говорилось ранее, эволюция тратит значительную часть мощности отбора на свойства, не имеющие отношения к интеллекту, – скажем, на эволюционную конкуренцию между иммунной системой и паразитами, названную «гонка Черной королевы». Эволюция продолжает растрачивать ресурсы на заведомо обреченные мутации и неспособна принимать во внимание статистическое сходство различных мутаций. Приведенные здесь примеры не должны отпугивать специалистов, разрабатывающих эволюционные алгоритмы для создания интеллектуальных программ, так как неэффективность естественного отбора (с точки зрения развития интеллекта) довольно легко преодолима.
Вполне вероятно, что устранение такого рода неэффективности поможет сэкономить несколько порядков требуемой мощности в 1031–1044 FLOPS, рассчитанной ранее. К сожалению, трудно сказать, сколько именно. Трудно дать даже приблизительную оценку – можно только гадать, будет ли это пять порядков, десять или двадцать пять {101} .
93
Более подробно эта тема раскрывается в статье: [Shulman, Bostrom 2012].
94
В своей диссертации Шейн Легг предлагает этот подход в качестве аргумента, что люди на воспроизведение эволюционного пути потратят гораздо меньше времени и меньше вычислительных ресурсов (при этом сам автор отмечает, что ресурсы, потребовавшиеся в ходе биологической эволюции, нам недоступны), см.: [Legg 2008]. Эрик Баум утверждает, что часть работы, связанной с созданием ИИ, проделана намного раньше без вмешательства человека, например: само строение генома уже содержит важную информацию об эволюционных алгоритмах, см.: [Baum 2004].
95
См.: [Whitman et al. 1998; Sabrosky 1952].
96
См.: [Schultz 2000].
97
См.: [Menzel, Giurfa 2001; Truman et al. 1993].
98
См.: [Sandberg, Bostrom 2008].
99
Обсуждение этой точки зрения, а также анализ функций, определяющих приспособленность организма лишь на основании критерия его умственных способностей, см. в диссертации Легга [Legg 2008].
100
Более системное и подробное описание способов, с помощью которых специалисты смогут превзойти имеющиеся на сегодня результаты эволюционного отбора, см. в статье «Мудрость природы» [Bostrom, Sandberg 2009 b].
101
Обсуждая целевую функцию, мы говорим лишь о вычислительных ресурсах, необходимых для моделирования нервной системы живых существ, и не учитываем затраты на моделирование их тел или их виртуальной окружающей среды. Вполне возможно, что расчет целевой функции для тестирования каждого организма потребует гораздо меньше операций, чем нужно для симулирования всех нейронных вычислений, аналогичных нейронным процессам, происходящим в мозгу существа за срок его жизни. Сегодня программы ИИ часто разрабатывают для действий в совершенно абстрактной среде (программы для доказательства теорем – в символических математических мирах; программы-агенты – в турнирных мирах простых игр).
Скептики могут настаивать, что для эволюции общего интеллекта абстрактной среды будет недостаточно, а виртуальное пространство должно детально напоминать тот мир, в котором развивались наши предки. Создание реалистичного виртуального мира потребовало бы гораздо больших инвестиций в вычислительные мощности, чем симуляция придуманного игрового мира или области для абстрактных задач (в то время как реальный мир достался эволюции «на дармовщину»). В предельном случае требования к полной точности на микроуровне приводят к тому, что потребность в вычислительных ресурсах вырастает до несуразно большой величины. Однако такой экстремальный пессимизм практически ничем не подкреплен: маловероятно, что наилучшие условия – с точки зрения эволюционирования интеллекта – должны максимально точно имитировать природу. Напротив, вполне возможно, что для симуляции естественного отбора искусственного интеллекта гораздо эффективнее будет использовать специальную среду, совершенно не похожую на ту, которая окружала наших предков, такую, которая специально разработана для стимулирования приспособления на основе нужных нам критериев (например, способности к абстрактному мышлению и общим навыкам решения задач, а не наличия максимально быстрой инстинктивной реакции или высокооптимизированной зрительной системы).
Рис. 3. Производительность сверхмощных компьютеров. В прямом смысле то, что называют «закон Мура», – это наблюдение, согласно которому количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается примерно каждые два года. Однако часто закон обобщают, считая, что так же по экспоненте растут и другие показатели производительности компьютеров. На нашем графике показано изменение во времени пиковой скорости наиболее сверхмощных компьютеров в мире (по логарифмической вертикальной шкале). В последние годы скорость последовательных вычислений расти перестала, но за счет распространения параллельных вычислений общее количество операций продолжает увеличиваться с прежним темпом {102} .
102
См.: [Wikipedia, 2012 b].
Есть еще одно осложнение, связанное с эволюционными факторами, выдвигаемыми в качестве последнего аргумента. Проблема заключается в том, что мы не в состоянии вычислить – даже очень приблизительно – верхнюю границу трудности получения интеллекта эволюционным путем. Да, на Земле когда-то появилась разумная жизнь, но из этого факта еще не следует, будто процессы эволюции с высокой степенью вероятности приводят к возникновению интеллекта. Подобное заключение было бы в корне ошибочным, поскольку не учитывается так называемый эффект наблюдения при отборе, подразумевающий, что все наблюдатели находятся на планете, где зародилась разумная жизнь, независимо от того, насколько вероятно или невероятно такое событие на любой другой планете. Предположим, для появления разумной жизни, помимо систематических погрешностей естественного отбора, требуется огромное количество удачных совпадений – настолько большое, что разумная жизнь появилась всего лишь на одной из 1030 планет, где существуют простые гены-репликаторы. В таком случае исследователи, запуская генетические алгоритмы в попытке воспроизвести созданное эволюцией, могут столкнуться с тем, что понадобится сделать примерно 1030 итераций, прежде чем они найдут комбинацию, в которой все элементы сложатся правильно. Кажется, это вполне согласуется с нашим наблюдением, что жизнь зародилась и развивалась здесь, на Земле. Обойти данный гносеологический барьер отчасти можно путем тщательных и до некоторой степени громоздких логических ходов – анализируя случаи конвергентной эволюции характеристик, имеющих отношение к интеллекту, и принимая во внимание эффект наблюдения при отборе. Если ученые не возьмут на себя труд провести такой анализ, то в дальнейшем уже никому из них не придется оценивать максимальное значение и выяснить, насколько предполагаемая верхняя граница необходимой вычислительной мощности для воспроизведения эволюции интеллекта (см. врезку 3) может оказаться ниже тридцатого порядка (или какой-то другой столь же большой величины) {103} .
103
Об эффекте наблюдения при селективном отборе см.: [Bostrom 2002 a] – общее описание; [Shulman, Bostrom 2012] – с точки зрения обсуждаемой здесь темы; [Bostrom 2008 b] – короткое определение на доступном для неспециалиста языке.
Перейдем к следующему варианту достижения нашей цели: аргументом в пользу осуществимости эволюции искусственного интеллекта служит деятельность головного мозга человека, на которую ссылаются как на базовую модель для ИИ. Различные версии такого подхода отличаются лишь степенью воспроизведения – насколько точно предлагается имитировать функции биологического мозга. На одном полюсе, представляющем собой своеобразную «игру в имитацию», мы имеем концепцию полной эмуляции мозга, то есть полномасштабного имитационного моделирования головного мозга (к этому мы вернемся немного позже). На другом полюсе находятся технологии, в соответствии с которыми функциональность мозга служит лишь стартовой точкой, но разработка низкоуровневого моделирования не планируется. В конечном счете мы приблизимся к пониманию общей идеи деятельности мозга, чему способствуют успехи в нейробиологии и когнитивной психологии, а также постоянное совершенствование инструментальных и аппаратных средств. Новые знания, несомненно, станут ориентиром в дальнейшей работе с ИИ. Нам уже известен пример ИИ, появившегося в результате моделирования работы мозга, – это нейронные сети. Еще одна идея, взятая из нейробиологии и перенесенная на машинное обучение, – иерархическая организация восприятия. Изучение обучения с подкреплением было обусловлено (по крайней мере частично) той важной ролью, которую эта тема играет в психологических теориях, описывающих поведение и мышление животных, а также техники обучения с подкреплением (например, TD-алгоритм). Сегодня обучение с подкреплением широко применяется в системах ИИ {104} . В будущем подобных примеров, безусловно, будет больше. Поскольку набор базовых механизмов функционирования мозга весьма ограничен – на самом деле их очень небольшое количество, – все эти механизмы рано или поздно будут открыты благодаря постоянным успехам нейробиологии. Однако возможен вариант, что еще раньше придет к финишу некий гибридный подход, сочетающий модели, разработанные, с одной стороны, на основе деятельности головного мозга человека, с другой – исключительно на основе технологий искусственного интеллекта. Совсем не обязательно, что полученная в результате система должна во всем напоминать головной мозг, даже если при ее создании и будут использованы некоторые принципы его деятельности.
104
См.: [Sutton, Barto 1998; Schultz et al. 1997].
Деятельность головного мозга человека в качестве базовой модели представляет собой сильный аргумент в пользу осуществимости создания и дальнейшего развития искусственного интеллекта. Однако ни один даже самый мощный довод не приблизит нас к пониманию будущих сроков, поскольку трудно предсказать, когда произойдет то или иное открытие в нейробиологии. Можно сказать только одно: чем глубже в будущее мы заглядываем, тем больше вероятность, что секреты функционирования мозга будут раскрыты достаточно полно для воплощения систем искусственного интеллекта.
Исследователи, работающие в области искусственного интеллекта, придерживаются разных точек зрения относительно того, насколько многообещающим является нейроморфный подход сравнительно с технологиями, основанными на полностью композиционных подходах. Полет птиц демонстрировал физическую возможность появления летающих механизмов тяжелее воздуха, что в итоге привело к строительству летательных аппаратов. Однако даже первые поднявшиеся в воздух аэропланы не взмахивали крыльями. По какому пути пойдет разработка искусственного интеллекта? Вопрос остается открытым: по принципу ли закона аэродинамики, удерживающего в воздухе тяжелые железные механизмы, – то есть учась у живой природы, но не подражая ей напрямую; по принципу ли устройства двигателя внутреннего сгорания – то есть непосредственно копируя действия природных сил.
Концепция Тьюринга о разработке программы, получающей большую часть знаний за счет обучения, а не в результате задания исходных данных, применима и к созданию искусственного интеллекта – как к нейроморфному, так и композиционному подходам.
Вариацией тьюринговой концепции «машины-ребенка» стала идея зародыша ИИ {105} . Однако если «машине-ребенку», как это представлял Тьюринг, полагалось иметь относительно фиксированную архитектуру и развивать свой потенциал за счет накопления контента, зародыш ИИ будет более сложной системой, самосовершенствующей собственную архитектуру. На ранних стадиях существования зародыш ИИ развивается в основном за счет сбора информации, действуя методом проб и ошибок не без помощи программиста. «Повзрослев», он должен научиться самостоятельно разбираться в принципах своей работы, чтобы уметь проектировать новые алгоритмы и вычислительные структуры, повышающие его когнитивную эффективность. Требуемое понимание возможно лишь в тех случаях, когда зародыш ИИ или во многих областях достиг довольно высокого общего уровня интеллектуального развития, или в отдельных предметных областях – скажем, кибернетике и математике – преодолел некий интеллектуальный порог.
105
В научный обиход термин введен Элиезером Юдковским, см.: [Yudkowsky 2007].
Это подводит нас к еще одной важной концепции, получившей название «рекурсивное самосовершенствование». Успешный зародыш ИИ должен быть способен к постоянному саморазвитию: первая версия создает улучшенную версию самой себя, которая намного умнее оригинальной; улучшенная версия, в свою очередь, трудится над еще более улучшенной версией и так далее {106} . При некоторых условиях процесс рекурсивного самосовершенствования может продолжаться довольно долго и в конце концов привести к взрывному развитию искусственного интеллекта. Имеется в виду событие, в ходе которого за короткий период времени общий интеллект системы вырастает со сравнительно скромного уровня (возможно, во многих аспектах, кроме программирования и исследований в области ИИ, даже ниже человеческого) до сверхразумного, радикально превосходящего уровень человека. В четвертой главе мы вернемся к этой перспективе, весьма важной по своему значению, и подробнее проанализируем динамику развития событий.
106
Сценарий описан как Ирвингом Гудом [Good 1965], так и Элиезером Юдковским [Yudkowsky 2007]. Однако почему бы не представить альтернативный вариант, в котором итеративная последовательность пойдет по пути не развития интеллекта, а упрощения структуры? То есть время от времени зародыш ИИ будет переписывать самого себя таким образом, что работа его последующих версий значительно облегчится.