Вход/Регистрация
Абсолютный минимум. Как квантовая теория объясняет наш мир
вернуться

Файер Майкл

Шрифт:

Квантовые колебания обладают дискретными уровнями энергии

В классическом осцилляторе, сделанном из шаров, соединённых пружинами, энергия системы может меняться непрерывным образом. Рассмотрим симметричную моду. Три шара, связанные двумя идеальными пружинами, лежат на столе; трение и сопротивление воздуха отсутствуют. Если, взявшись за два внешних шара, в одинаковой мере растянуть две пружины и отпустить, то шары будут совершать симметричные упругие колебания. Поскольку пружины идеальные, трение о стол отсутствует и нет сопротивления воздуха (в реальной жизни такого, конечно, не бывает), колебания будут продолжаться вечно. Период и частота этих колебаний не зависят от того, насколько сильно были растянуты пружины. Период определяется упругостью пружин и массами шаров. Если растянуть пружины лишь чуть-чуть, то шары будут двигаться медленно. Их средняя кинетическая энергия будет мала. Если растянуть пружины сильно, шары станут двигаться быстро, а их средняя кинетическая энергия окажется велика. Энергия колебательной системы из шаров на пружинах меняется непрерывным образом. Она зависит только от того, насколько сильно мы растянем пружины.

Молекулы в действительности не являются шарами на пружинах. Это квантовомеханические системы, состоящие из атомов, соединённых химическими связями. Вместо непрерывного спектра энергий квантовые системы обладают дискретными колебательными энергетическими уровнями. Квантование их энергии происходит точно так же, как в задаче о частице в ящике, обсуждавшейся в главе 8. Герхард Херцберг (1904–1999) получил Нобелевскую премию по химии в 1971 году

«за вклад в понимание электронной структуры и строения молекул, особенно свободных радикалов».

Работа Херцберга по определению строения молекул основывалась во многом на его объяснении колебательных спектров молекул.

Энергия классического мяча для ракетбола меняется непрерывным образом, но энергия квантового мяча (частицы в ящике) привязана к энергетическим уровням (см. рис. 8.6). На рис. 17.3 изображена потенциальная кривая для вибрационной моды молекулы, подобная представленной на рис. 12.1, но теперь на ней также отмечены первые несколько колебательных энергетических уровней. И вновь, как и в случае частицы в ящике, низший энергетический уровень n=0 не соответствует нулевой энергии.

Энергия квантовых колебаний

Простейшая модель для колебательных уровней энергии даёт следующие их значения:

E=h••(n+ 1/2 ),

где h — постоянная Планка, — частота колебаний, n — квантовое число, которое может принимать значения 0, 1, 2 и т. д. При n=0 энергия равна 1/2 h•. При n=1 энергия равна 3/2h•. Таким образом, разность в энергии между низшим энергетическим уровнем и первым возбуждённым колебательным состоянием равна h•. В этой модели все энергетические уровни отстоят друг от друга на одну и ту же величину h•. В реальных молекулах c увеличением квантового числа энергетические уровни становятся ближе друг к другу. Для наших целей важна только разность между низшим энергетическим уровнем и первым возбуждённым.

Деформационная мода CO2 поглощает на пике земного чернотельного спектра

В нижней части рис. 17.3 изображены первые два колебательных энергетических уровня. Свет будет поглощаться при энергии, равной разности между этими уровнями, которая обозначена пунктирной стрелкой. Поскольку эта разность в энергии равна E=h•=c•h/, измерение частоты () и длины волны () света, при которой он поглощается, даёт нам частоту осциллятора. Как показано на рисунке, для деформационных мод углекислого газа E=667 см– 1. Деформационные моды имеют одинаковую частоту, поскольку различаются только направлением изгиба. (Энергию и частоту можно характеризовать числом колебаний волны на единицу длины (см– 1), если разделить энергию E на c•h.) Частота света, поглощаемого изгибами молекулы CO2, почти в точности совпадает с пиком земного чернотельного излучения. Растянуть химическую связь намного труднее, чем деформировать (то есть на это требуется больше энергии). Поэтому симметричная и асимметричная моды углекислого газа имеют намного более высокие частоты. Ни одна из них не даёт существенного вклада в поглощение земного чернотельного излучения.

Рис. 17.3.Вверху: кривая потенциальной энергии, показывающая, как энергия зависит от длины химической связи, с отмеченными на ней колебательными квантовыми уровнями. Показаны только несколько первых энергетических уровней. Внизу: низший колебательный энергетический уровень n=0 и первый возбуждённый уровень n=1 для деформационной моды молекулы CO2 (см. рис. 17.2). Данный переход (стрелка) будет поглощать и земное чернотельное излучение (см. рис. 17.1)

Парниковый эффект CO2 является кванотовомеханическим

Важнейший факт состоит в том, что на самом фундаментальном уровне вклад CO2 в парниковый эффект и глобальное изменение климата является принципиально квантовомеханическим. Во-первых, связи, которые разрываются и создаются при горении природного газа, нефти и угля, определяются квантовой механикой, которая порождает молекулярные орбитали и определяет силу химических связей. От силы этих химических связей зависит количество энергии, высвобождаемой в расчёте на одну получающуюся молекулу CO2, а на ещё более фундаментальном уровне форма спектра испускаемого Землёй чернотельного излучения определяется квантовыми эффектами.

Чернотельное излучение обсуждалось в главах 4 и 9. Объяснение Планком формы спектра чёрного тела и его изменения с температурой светящегося объекта было первым приложением квантовой теории. Полоса поглощения CO2 располагается вокруг волны с частотой 667 см– 1 в результате квантования колебательных уровней молекул — чисто квантового эффекта. Деформационные моды молекулы CO2 характеризуются квантовым переходом между колебательными состояниями n=0 и n=1, энергия которого соответствует ключевой частоте земного чернотельного спектра. По мере того как мощные электростанции, многочисленные автомобили и самолёты, горящие тропические леса и т. п. выделяют углекислый газ, квантовое взаимодействие между CO2 и земным инфракрасным чернотельным излучением порождает парниковый эффект.

  • Читать дальше
  • 1
  • ...
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: