Вход/Регистрация
Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики
вернуться

Фрэнкс Билл

Шрифт:

Подведем итоги

Наиболее важные положения этой главы:

• Операционная аналитика совершает «промышленную революцию» в области аналитики. Она выводит аналитику за традиционные рамки применения к операционным проблемам.

• В последние десятилетия организации совершили переход от описательной аналитики и отчетности к прогностической аналитике. Операционная аналитика идет еще дальше и делает аналитику предписывающей.

• Операционная аналитика представляет собой интегрированные автоматизированные процессы принятия решений, которые предписывают и выполняют действия в рамках «времени принятия решения».

• Добиться успеха в операционной аналитике невозможно без прочной основы в виде традиционной аналитики.

• Эпоха Аналитики 1.0 представлена традиционным подходом к аналитике, когда внимание сосредоточивалось на пакетной обработке внутренних структурированных данных.

• Эпоха Аналитики 2.0 ознаменована взлетом больших данных, появлением новых типов данных и аналитических методов, использованием внешних источников данных.

• Эпоха Аналитики 3.0 сделала возможной применение операционной аналитики. Взяв все лучшее из эпох Аналитики 1.0 и Аналитики 2.0, она выработала целостный аналитический подход.

• Всё в большей степени принятие решения о покупке определяет, наряду с физическими характеристиками продукта, поставляемая вместе с ним аналитика.

• Границы между отраслями стали размываться после того, как компании внезапно осознали, насколько выгодно встраивать высокотехнологичные датчики в свою продукцию и создавать аналитику на основе полученных данных.

• Ввиду автоматизированного и стремительного процесса принятия решений посредством операционной аналитики качество данных становится как никогда важным.

• Аналитика поощряет творчество, а не душит его. Сегодня можно свободно тестировать творческие идеи с минимумом затрат.

• Операционная аналитика в значительной степени основана на старых концепциях, которые она выводит на новый уровень.

Глава 2

Больше данных… Еще больше данных… Большие данные!

В этой главе мы рассмотрим важный тренд, связанный с большими данными. Читатели должны в нем разбираться, если в их организациях планируется использовать большие данные для поддержки операционной аналитики. Разумеется, организации всегда собирали данные о своей деятельности, однако в последние годы темпы накопления возросли. И не только потому, что увеличились и источники данных. Дело в том, что зачастую данные поступают в новых форматах и содержат информацию, требующую различных аналитических технологий. Таким образом, «большие данные» – это общий термин, который применяется ко всему тренду, приведшему к проблемам в виде увеличения объемов данных, количества их источников и разнообразия форматов.

Когда организация приступает к рассмотрению больших данных и пытается понять, как они повлияют на ее аналитические процессы, она должна учесть ряд важных моментов. В этой главе мы рассмотрим несколько рекламных трюков, сопровождающих большие данные (на эти трюки иногда попадаются организации), а также разберем способы подготовки к внедрению технологий больших данных с учетом перспективы. Большие данные вовсе не так страшны, как может показаться вначале. Понимание того, как большие данные вписываются в общую картину, позволит вам успешно включить их в операционную аналитику.

Разбираемся с обманами

Нет никаких сомнений в том, что большие данные окружены столь же большой рекламной шумихой. Организации должны разобраться с обманами и сосредоточиться на действительно важном, чему может способствовать ряд методов, предложенных в этом разделе. Ни в коем случае мы не намерены преуменьшать важность или ценность больших данных. Наша цель – вернуть большие данные к реальности. Формирование реалистичных ожиданий должно стать первым шагом в процессе работы с большими данными.

Определение больших данных? Не нужно!

Один из первых вопросов, который мне часто задают клиенты: «Что такое большие данные, Билл? Вы можете дать им определение?» По-видимому, оно очень заботит людей {9} . Чтобы убедиться в этом воочию, посетите некоторые группы на LinkedIn, посвященные большим данным. В каждой группе вы столкнетесь с вопросом определения больших данных, который задается в той или иной форме на протяжении последних нескольких лет. На одном из форумов, где я был вовлечен в дискуссию, размещались не то что десятки, а сотни ответов на вопрос: «Каково определение больших данных?» И это на форуме, где любой пост собирал в лучшем случае пару откликов. По мере развертывания дискуссии ее участники пытались превзойти друг друга, добавляя всё новые нюансы, подходящие или не подходящие к определению. Мне это занятие показалось глупым и заумным.

9

На основе статьи в моем блоге для Международного института аналитики от 14 июня 2012 г., озаглавленной «Определение больших данных? Не нужно!» (“What’s the Definition of Big Data? Who Cares?”). См. http://iianalytics.com/2012/06/whats-the-definition-big-data-who-cares/

Люди чересчур озабочены определением больших данных. Лично я всегда предпочитал самое короткое из всех существующих определений. Пусть оно противоречит остальным, зато состоит всего из двух слов: «Не нужно!» Поначалу такой ответ может показаться вам экстремальным. С чего я это взял? Позвольте объясниться.

Если главная задача организации – решить некую бизнес-проблему путем внедрения операционной аналитики, ее не должно волновать определение больших данных. И вот почему. Схема действий, которой должна следовать организация и которой она, вероятно, следовала много лет в прошлом, очень проста. Если у вас есть проблема, требующая решения, вы должны посмотреть вокруг и задать себе вопрос: «Какие данные, если их собрать, организовать и использовать для аналитического процесса, помогут нам решить эту проблему?» Когда вы определите, что это за данные, вы должны придумать, как их собрать, организовать и включить в аналитику. Но тут возникает ключевой момент. Вопрос «Полезны ли эти данные для моего бизнеса?» не имеет абсолютно никакого отношения к определению больших данных. Полезными для бизнеса могут оказаться большие данные, малые данные или же ряд электронных таблиц.

  • Читать дальше
  • 1
  • ...
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: