Вход/Регистрация
Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики
вернуться

Фрэнкс Билл

Шрифт:

• Интернет вещей будет создавать высокое отношение шумов к сигналам. Хотя он и станет генерировать один из крупнейших пулов необработанных данных, но лишь очень небольшая их часть будет иметь ценность за пределами текущего момента.

• Выбор наилучшего способа выполнения аналитического процесса может оказаться нелегким. Не обостряйте отношения, утверждая, что тот или иной подход не будет работать; вместо этого сосредоточьтесь на поиске лучшего подхода из всех возможных.

• Оптимизируйте аналитический процесс в масштабах всего аналитического окружения, а не отдельного компонента. Чтобы максимизировать получаемую ценность, задействуйте все доступные возможности.

• Операционная аналитика предъявляет два различных набора требований. На этапе обнаружения данных требуется максимум гибкости и минимум ограничений. На этапе внедрения приоритет следует отдавать обеспечению скорости, надежности и стабильности.

• Ввиду автоматического характера операционной аналитики иногда она будет давать сбои, как и любая автоматизированная производственная линия. Главное – действовать быстро, чтобы минимизировать ущерб, поскольку на устранение проблем приходится меньшая часть издержек при ведении бизнеса.

• Операционно-аналитические процессы требуют мониторинга и контроля, как и любые другие процессы. К ним применимы и классические стандарты бизнес-аналитики.

• Различные метрики достижений, такие как время инсайта, необходимо применять для обнаружения данных, а традиционные метрики, такие как время выполнения процесса, по-прежнему пригодны для операционных процессов.

• Конфиденциальность представляет сегодня огромную проблему для больших данных и аналитики. Хотя мнения о том, какими именно должны быть границы конфиденциальности, разнятся, несомненно одно – мы отчаянно нуждаемся в таких границах, чтобы избежать эпохи Большого Брата.

• Любое действие, влияющее на конфиденциальность, должно быть законным, этичным и приемлемым для общественности. Будьте предельно осторожны, поскольку эти три критерия не всегда совпадают и могут привести к ситуации в духе «уловки-22».

• Политика конфиденциальности и ее настройки должны совершенствоваться, чтобы отражать устойчивые данные и усложнившиеся требования современного мира. Это не только позволит свести к минимуму юридические риски, но и станет конкурентным преимуществом для организации.

Часть III

Превращаем традиционную аналитику в операционную

Глава 7

Аналитика

В этой главе мы сосредоточимся на аналитических концепциях, позволяющих организации превратить аналитику в операционную. Как мы увидим, далеко не все ново под луной в мире операционной аналитики, но возникают и новые уникальные проблемы, которые важно понимать и учитывать.

Не забывайте о том, что превращение традиционной аналитики в операционную происходит эволюционно, поэтому многие уроки и принципы из прошлого, связанные с разработкой аналитических процессов, точно так же применимы и в настоящем, но с некоторыми изменениями. Организации, уже хорошо освоившие использование аналитики и располагающие в штате крепкими командами аналитиков-специалистов, вправе рассчитывать на успех.

Создание операционно-аналитических процессов

Мы дали определение операционной аналитики в первой главе. Здесь же начнем с рассмотрения ряда тем касательно создания и внедрения операционной аналитики. Как вы увидите, она имеет много общего с традиционной пакетной аналитикой, поэтому вам не придется начинать с нуля. Но в то же время это означает, что организации не могут прыгнуть сразу же на уровень операционной аналитики, если у них нет никакого опыта работы с традиционной пакетной аналитикой.

Постоянство аналитического процесса

Когда появились большие данные и в мир аналитики начали приходить люди с разной подготовкой, начались дебаты о том, не потребуется ли для аналитики новый рабочий процесс. Нет, не потребуется. На фундаментальном уровне рабочий процесс является одинаковым для всех типов данных и аналитики. Подобное постоянство замечательно, поскольку избавляет нас от необходимости каждый раз заново изобретать колесо, когда нам нужно применить аналитику новым способом или использовать новые источники данных.

Я был свидетелем споров по поводу того, представляет ли анализ больших данных нечто новое. Помню, как в ходе жарких дебатов утверждал, что в обнаружении больших данных нет ничего нового. Чтобы положить конец спорам, я показал своим оппонентам модель межотраслевого стандартного процесса анализа данных (Cross Industry Standard Process for Data Mining, CRISP-DM), разработанную в 1990-х гг. Модель CRISP-DM описывает основные шаги в классическом процессе анализа данных. Я поместил схему процесса CRISP-DM рядом с предложенной схемой процесса обнаружения больших данных. Также нарисовал таблицу, где сопоставил отдельные этапы каждого процесса. Один из моих оппонентов, ранее утверждавший, что это были разные процессы, воскликнул: «Постой, Билл, но это практически то же самое!» Наконец-то они поняли мою точку зрения. Да, слегка были изменены термины и семантика, но фундаментально «новый» процесс ничем не отличался от «старого». В таблице 7.1 показано сходство фаз этих двух моделей, тогда как на рис. 7.1 представлена схема типового аналитического рабочего процесса.

  • Читать дальше
  • 1
  • ...
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: