Шрифт:
Яма-ловушка.
А что если и для электрических зарядов устроить такую горку, разумеется электрическую, чтобы они легко скатывались под горку, но не могли выбраться назад? Подобная горка называется потенциальным барьером. Он обязательно образуется в месте контакта двух веществ с различными типами проводимости-дырочным (p– тип) и электронным (n– тип). Веществами могут быть полупроводник p– типа и металл или два полупроводника р- и n– типов проводимости.
Вот как это происходит. В веществе с проводимостью n– типа избыток свободных электронов, а в веществе с проводимостью p– типа, напротив, электронов не хватает. Разумеется, электроны устремляются оттуда, где «густо», туда, где «пусто». А дырки двигаются в противоположном направлении. Очень образный пример, иллюстрирующий природу и движение электронов и дырок, приведен в учебнике физики для вузов Г. А. Зисмана, О. М. Тодеса: электрон можно представить как капельку воды над поверхностью, а дырку — как пузырек воздуха под ней. Одна и та же сила тяжести заставляет капельку двигаться вниз, а пузырек воздуха — вверх. Подобным же образом электроны и дырки перемещаются в противоположных направлениях под действием одного и того же электрического поля.
Контакт р– и n– полупроводников назван р– n переходом. Итак, дырки и электроны двинулись через переход. Долго ли будет продолжаться их движение? Наверно, нет. Как и на любом перекрестке, должен вспыхнуть красный свет, прекращающий движение по переходу. Ведь в результате движения зарядов p– область получает отрицательный. заряд, а n– область — положительный. В точке контакта возникает электрическое поле, препятствующее (как красный свет светофора) дальнейшему движению. Теперь дыркам, чтобы попасть в n– область, надо забраться на потенциальную горку высотой , т. е. преодолеть потенциальный барьер. То же самое относится и к электронам: поскольку они отрицательны, то и горка со склоном вниз для них препятствие. Значение определяется только свойствами веществ, образующих переход, и еще немного зависит от температуры.
А вот теперь начинается самое интересное. В любом полупроводниковом диоде есть р– n переход. Собственно, кроме перехода диод имеет лишь корпус и выводы. Диод пропускает ток только в одном направлении. Давайте мысленно поэкспериментируем. Приложим внешнее напряжение «плюсом» к n– области, а «минусом» — к p– области. Этим мы только увеличим высоту горки или потенциального барьера. При этом всякое движение зарядов через переход прекратится и тока в цепи не будет. Поменяем полярность внешнего напряжения. Это уменьшит высоту потенциального барьера, и, следовательно, уже ничто не будет мешать носителям заряда двигаться через переход, т. е. в цепи появится электрический ток.
Потенциальный барьер, образующийся в р-n переходе.
Полупроводниковый диод пропускает ток только в одном направлении. Это направление называется прямым, а ток — прямым, или отпирающим. Допустимое значение прямого тока определяется площадью контакта и для мощных диодов может составлять десятки ампер. В то же время значение обратного тока обычно пренебрежимо мало и исчисляется микроамперами. Если нужно выпрямить еще больший ток, несколько полупроводниковых диодов соединяют параллельно.
Полупроводниковый диод пропускает ток только в одном направлении.
Схема простейшего выпрямителя на полупроводниковом диоде мало отличается от приведенной схемы выпрямителя с кенотроном. Она даже упрощается — становится ненужной обмотка силового трансформатора, питающая накал лампы. Но у такого выпрямителя, называемого однополупериодным, есть недостаток: ток в нагрузку течет лишь во время одного полупериода переменного напряжения.
Однополупериодный выпрямитель.
Чтобы «заставить работать» и второй полупериод, устанавливают второй диод и наматывают еще одну обмотку (вторичную) силового трансформатора. Напряжения на диодах UA и UB имеют противоположную полярность, они противофазны. Поэтому диоды выпрямителя работают поочередно: когда один диод проводит ток, другой заперт, и наоборот. У нас получился двухполупериодный выпрямитель. Ток в нагрузке теперь пульсирует с частотой 100 Гц, а не 50, как ранее.
Двухполупериодный выпрямитель.
В простейших случаях пульсации устраняются конденсатором большой емкости, когда же требуется более точное сглаживание, используют фильтр нижних частот.
Сглаживающий фильтр.
Аналогичными свойствами обладает и мостовая схема выпрямителя. В ней используются четыре диода, зато нужна только одна вторичная обмотка трансформатора. Ток в нагрузке мостового выпрямителя имеет точно такой же вид, как и у двухполупериодного. Специально для мостовых выпрямителей выпускаются блоки из четырех диодов в одном корпусе.