Вход/Регистрация
Посвящение в радиоэлектронику
вернуться

Поляков Влад

Шрифт:

Все это относится к катушечным магнитофонам. В них использовалась стандартная лента шириной 6,25 мм. Ну а толщина ленты была предметом многих и многих забот технологов. Ведь чем тоньше лента, тем больше ее войдет на стандартную катушку, тем больше будет время записи. К тому же тонкая лента мягче и лучше прилегает к рабочему зазору головки. Это — с одной стороны, а с другой, лента должна быть прочной и не растягиваться в лентопротяжном механизме. Чтобы хорошо прижать ленту к головке, ее надо сильно натянуть. Эти факторы ограничивают минимальную толщину ленты. Раньше выпускались ленты на ацетатной основе толщиной 37 и 55 мкм. Современные ленты на лавсановой основе значительно тоньше: 18… 27 мкм.

Подлинную революцию в магнитной записи звука произвели кассеты. Согласитесь, что не совсем удобно каждый раз закреплять конец ленты на катушке и закладывать ленту в прорезь корпуса лентопротяжного механизма. Кассета сразу решила все эти проблемы. В кассетах используют еще более тонкие и узкие ленты, намотанные на две бобышки, постоянно расположенные в кассете.

Кассетные магнитофоны стали легче, удобнее, появились портативные модели с батарейным питанием. Часто попадаются в скверах, на улицах, в аудиториях институтов, техникумов и в метро молодые люди с карманным магнитофоном-проигрывателем (плейером) и легкими стереонаушниками. Надо ли говорить, что такой молодой человек плохо воспринимает внешний мир, оглушенный стереомузыкой (часто довольно низкопробной), он является вероятным кандидатом в жертвы дорожно-транспортных происшествий, а уж в аудиториях проводит время совершенно зря.

Устройство магнитофона (ГС, ГЗ, ГВ — головки стирания, записи и воспроизведения).

Но довольно о печальных последствиях усовершенствованной технологии, породившей «магнитофонный бум». Обратимся к физическим основам магнитной записи. Почему, собственно, на пленке остается записанный звуковой сигнал? Почему он не исчезает, как только перестает действовать магнитное поле головки? Таково свойство ферромагнетиков веществ с очень высокой магнитной проницаемостью. Что это такое? — Коэффициент, показывающий, во сколько раз увеличивается магнитная индукция в веществе по сравнению с пустым пространством. Магнитное поле создастся электрическим током. Магнитные силовые линии, проведенные в направлении вектора магнитной индукции В, по форме представляют собой кольца, нанизанные на провод с током. Если провод свернуть в кольцо, магнитная индукция возрастет. Сделаем кольцо из нескольких витков и таким образом заставим ток несколько раз обегать наше кольцо. Во столько же раз возрастет и магнитная индукция. У нас получилась катушка индуктивности, создающая магнитное поле при пропускании через нее тока. Введем в катушку сердечник из железа, феррита или другого ферромагнетика. Магнитное поле возрастет. Но почему, ведь ток-то мы не увеличивали?!

Оказывается, в железе, как и в любом ферромагнетике, есть свои крошечные, как говорят, элементарные магнитики. Простейший атом с одним электроном, вращающийся со скоростью v вокруг ядра, уже является элементарным магнитом, ведь движущийся заряд-электрон — это кольцевой ток, создающий свое собственное магнитное поле. Кроме того, электрон обладает еще и собственным магнитным моментом, обусловленным, как можно себе представить, быстрым вращением электрона вокруг собственной оси — его спином. Отдельно взятые магнитные поля атомов очень слабы. Но когда вещество ферромагнетика кристаллизуется из расплава, электроны ориентируются своими магнитными полями в одну сторону. Образуется микрокристаллик — домен, в котором все элементарные магнитные поля складываются и образуют уже значительное магнитное поле домена. Но если кусок ферромагнетика не намагничен, то магнитные поля доменов ориентированы как попало, хаотически, и общее магнитное поле в веществе отсутствует. Картина сразу меняется, если ферромагнетик поместить во внешнее магнитное поле (в катушку индуктивности). Внешнее поле заставляет магнитные поля доменов поворачиваться, ориентироваться в одном направлении. Теперь к внешнему полю добавляются собственные поля доменов, и общее магнитное поле возрастает.

Относительная магнитная проницаемость ферромагнетиков очень велика: она может достигать нескольких тысяч и даже десятков тысяч. Во столько же раз возрастает и магнитное поле в сердечнике. Вот какой огромный эффект создают крошечные элементарные магнитики — домены! Поэтому все катушки в электротехнических устройствах — трансформаторах, двигателях, электромагнитах и в той же головке магнитофона — обязательно наматывают на ферромагнитных сердечниках. Без магнитопровода потребовалось бы гораздо больше витков, а в ряде случаев устройство и вообще нельзя было бы изготовить.

Магнитный поток головки.

А зависят ли магнитные свойства ферромагнетика от величины приложенного магнитного поля? Оказывается, зависят, и очень сильно. Эту зависимость лучше всего изобразить — графически. Отметим по горизонтали напряженность внешнего магнитного поля Н. Она пропорциональна силе тока в катушке. А по вертикали отложим магнитную индукцию в магнитопроводе В. На начальном участке кривой при малом токе в катушке индукция возрастает не очень быстро. Домены поворачиваются в направлении поля как бы нехотя. Затем магнитная индукция возрастает быстрее. В этой части кривая намагничивания идет круто вверх. Наконец, все домены поворачиваются по полю и индукция перестает расти. Кривая намагничивания теперь идет почти горизонтально, и магнитная проницаемость резко падает. Это явление называется насыщением, а предельная величина индукции в магнитопроводе — индукцией насыщения ВНАС. То, что у нас получилось, называется основной кривой намагничивания.

Магнитное поле кругового тока.

Еще более интересные явления произойдут, если мы доведем ферромагнетик до насыщения и будем уменьшать внешнее поле. В этом случае разные ферромагнетики ведут себя по-разному. У магнитомягких материалов, к которым относится, например, железо, индукция будет уменьшаться и исчезнет вместе с внешним полем. Из магнитомягких материалов делают сердечники электромагнитов, используемых, например в реле. Пока в обмотке течет ток, магнитопровод намагничен и притягивает магнитные предметы. Но стоит ток выключить, как все магнитные свойства сердечника исчезают, и он остается таким же простым куском железа, каким и был раньше. Иначе обстоят дела у магнитотвердых материалов. Ток в катушке можно уменьшить до нуля, но намагниченность магнитопровода не исчезает! Он продолжает притягивать ферромагнитные предметы. Собственно, именно так и изготавливают постоянные магниты в форме подковы, бруска или магнитной стрелки компаса.

Круговые токи в атомах приводят к намагничиванию тела, как целого.

Магнитное поле катушки.

На нашей кривой линия раздваивается: при увеличении напряженности магнитного поля мы движемся по уже знакомой кривой намагничивания, а при уменьшении — по другой кривой, проходящей заметно выше. И когда ток в катушке, а следовательно, и Н обращаются в нуль, индукция магнитопровода не исчезает, а остается равной некоторой величине Вост, которая так и называется — остаточная индукция. Чтобы размагнитить сердечник, надо пустить ток противоположного направления. Напряженность поля, при которой индукция В обратится в нуль, называется коэрцитивной силой Нс. Чем больше коэрцитивная сила, тем труднее размагнитить данный ферромагнетик.

  • Читать дальше
  • 1
  • ...
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: