Шрифт:
Третья координата — дальность-определяется по запаздыванию отраженного сигнала относительно излучаемого. Так и хочется сказать, что запаздывание сигнала очень мало, поскольку радиоволны распространяются со скоростью света, равной 300000 км/с, или 3·108 м/с. Действительно, для самолета, находящегося на расстоянии 3 км от РЛС, запаздывание составит всего 20 мкс (20·10– 6 с). Такой результат получился из-за того, что радиоволна проходит путь в обоих направлениях, к цели и обратно, так что общее расстояние, пройденное волной, составит 6 км. Но вот при радиолокации Марса, успешно проведенной в начале 60-х годов, задержка сигнала составила около 11 мин, а это время уж никак не назовешь малым!
И еще один аспект этой интереснейшей техники. Если посланный сигнал будет «путешествовать» в просторах космоса целых 11 мин, насколько же он ослабнет! И как выделить его в приемнике из собственных шумов приемника и шумов космического происхождения? Ослабление сигнала при радиолокации вполне поддается расчету, который основан на простых физических соображениях. Их мы уже рассматривали в гл. 4. Если в какой-то точке излучается мощность Р, то поток мощности через единичную площадку, находящуюся на расстоянии R, будет пропорционален P/4R2. В знаменателе стоит площадь сферы радиусом R, окружающей источник. Таким образом, при обычной радиосвязи мощность, принятая нами, обратно пропорциональна квадрату расстояния. Этот закон — закон сферической расходимости пучка энергии выполняется всегда при распространении волн в свободном пространстве.
Поток энергии через единичную площадку обратно пропорционален квадрату расстояния.
Даже если мы сконцентрируем излучаемую мощность в узкий луч и поток энергии возрастет в несколько раз (этот коэффициент называется коэффициентом направленного действия антенны, сокращенно КНД), квадратичная зависимость от расстояния сохранится. В радиолокации дело обстоит значительно хуже. Облучаемая на расстоянии R цель сама рассеивает энергию по всем направлениям. И если облучающий цель поток энергии ослабевает обратно пропорционально R2, то приходящий к приемнику рассеянный поток еще ослабляется во столько же раз и оказывается обратно пропорциональным R4. Это означает, что для повышения дальности действия РЛС в 2 раза при прочих равных условиях мощность ее передатчика надо повысить в 16 раз. Вот какой дорогой ценой достигаются высокие характеристики современных РЛС!
Приведу несколько конкретных примеров. Возьмем небольшую аэродромную РЛС с антенной площадью 10 м2. И пусть она наблюдает небольшой самолет с эффективной поверхностью рассеяния [2] 5 м2 на длине волны 10 см. Работоспособность такой РЛС сейчас ни у кого не вызывает сомнений. Однако расчет показывает, что отраженный сигнал, приходящий в приемник при удалении самолета на 80 км, в этом случае на 16 порядков слабее излучаемого! Как говорят инженеры, потери сигнала при локации составляют 10– 16. или 160 дБ. Но их это не пугает. При излучаемой мощности 10 кВт чувствительность приемника должна составить 10– 12 Вт. Такие приемники научились делать еще в годы второй мировой войны!
2
Эффективной поверхностью рассеяния называют площадь всенаправленного переизлучателя, создающего такой же отраженный сигнал, как и реальный объект.
Другой пример. Заставим нашу РЛС осуществлять локацию Марса. Дело это, разумеется, совершенно безнадежное, если не принять специальных мер. Увеличим площадь антенны до 1000 м2. И даже в этом случае потери сигнала на трассе составят 250 дБ, или 1025. Понадобятся сверхмощный передатчик и особые методы приема сигналов, уровень которых лежит гораздо ниже уровня собственных шумов приемника. К одному из таких методов относится когерентное накопление сигнала. Сеансы локации проводятся много раз, и отраженные сигналы суммируются. Амплитуда суммарного сигнала после суммирования n посылок возрастает в n раз, тогда как амплитуда статистически независимых шумов — только в n раз. При достаточно длительном времени накопления удается выделить чрезвычайно слабые отраженные сигналы. В первых опытах по локации Марса время накопления составляло 8.5 ч.
Существует великое множество радиолокаторов. Это и только что упомянутый «планетный», представляющий собой уникальный комплекс сооружений со сверхмощными передатчиками и ЭВМ для обработки сигналов, увенчанный полноповоротной антенной-чашей диаметром 75 м (только представьте себе грандиозность этого сооружения!). Это и миниатюрный, почти карманный радар работника автомобильной инспекции, позволяющий в считанные секунды определить скорость движущегося по шоссе автомобиля. Радарами оснащены теперь все морские и речные суда, все самолеты. Жизнь и деятельность в самых отдаленных уголках страны даже трудно представить себе без радаров.
Когда во время экспедиции гидрографическое судно шестой день не выходило из тумана в районе Курильских островов и Камчатки, я никак не мог понять, как же эти места осваивали и исследовали первопроходцы? Каждую ночь, каждый туманный день они должны были быть настороже — не послышится ли по носу судна плеск воды, накатывающейся на рифы. А в случае крушения помощи ждать неоткуда места не заселены, а карт и лоций нет — именно первопроходцы их и составляли.
Теперь все не так. По ворсистой ковровой дорожке, идеально чистой на гидрографическом судне, ты идешь к навигаторам, и они покажут карту, где со скрупулезной точностью нанесены мели, берега и глубины. Покажут и экран РЛС кругового обзора, где электронный луч непрерывно рисует ту же карту, получаемую радаром в этот самый момент. Видим на ней и берега, и рифы, и проходящие мимо корабли. А окна рубки «занавешены» туманом, и не видно даже передней мачты. Этому чудо-прибору, радару, не более 50 лет.
В 30-х годах нашего столетия сгущались тучи на политическом горизонте Европы, да и всего мира. Набирал силу и наглел фашизм в Германии, Италии, в Японии поговаривали о мировом господстве. Страны оси Рим-Берлин-Токио лихорадочно вооружались. Росли скорости, вооруженность и дальность полета самолетов. Появилась настоятельная необходимость в обнаружении и определении координат воздушных целей. Но как это сделать?
Имевшаяся в это время звуколокационная техника уже не могла работать удовлетворительно. Тем не менее звукоулавливатели разрабатывались, и на октябрьских парадах возили по Красной площади похожие на спрутов установки с черными рупорами и переплетением трубок. «Слухач» звукоулавливателя наводил рупоры в направлении места, откуда исходил звук от летящего самолета. Но скоростной самолет улетал в это время далеко… К тому же звук «относился» ветром. А обычные методы визуального наблюдения оказывались бесполезными, как только самолет скрывался за облаками. Прожекторы да звукоулавливатели — вот и вся техника, которая была в распоряжении военных к середине 30-х годов. И военные выступили с инициативой создать новые средства использующие другие виды излучений, главным образом электромагнитные волны. Инициаторами исследований были представитель Главного артиллерийского управления (ГАУ) РККА М. М. Лобанов, впоследствии генерал-лейтенант, и представитель управления ПВО РККА П. К. Ощепков, впоследствии профессор, директор Института интроскопии. В Центральной радиолаборатории (ЦРЛ) организовалась группа под руководством старшего инженера Ю. К. Коровина. Договор между ЦРЛ и ГАУ был заключен в октябре 1933 года. Кстати, этот договор был первым в СССР юридическим документом, положившим начало планомерным научно-исследовательским и опытно-конструкторским работам в области радиолокации, а также их финансированию. В Соединенных Штагах по настоянию вице-адмирала Боуэна лишь в 1935 году конгресс ассигновал Морской исследовательской лаборатории 100 000 долларов специально на работы в области радиолокации. А первый контракт с промышленностью на постройку шести опытных станций был заключен в 1939 году.