Вход/Регистрация
Искусство думать. Латеральное мышление как способ решения сложных задач
вернуться

де Боно Эдвард

Шрифт:

Выше мы показали, каким образом несколько Т-образных элементов можно объединить в стандартные узлы, чтобы получить более крупные базовые элементы, облегчающие описание сложных фигур. Мы отметили, что эти более крупные элементы в силу своей громоздкости обладают меньшей универсальностью, чем сам Т-образный элемент. Точно так же и сам Т-образный элемент можно рассматривать как стандартное соединение L-образного элемента с коротким бруском. Бывают случаи, когда это стандартное соединение оказывается слишком крупным и непригодным для описания, поэтому его следует разбить на более мелкие элементы с более широкой сферой применения. Итак, Т-образный элемент сам может быть разбит на составные части.

Как сборка Т-образного элемента в более крупные блоки, так и его разбивка на более мелкие составные части – вполне допустимые действия, поскольку изначальный выбор этого элемента в качестве знакомой фигуры был произвольным шагом. Если бы мы первоначально выбрали L-образный элемент, то Т-образный блок стал бы производным от него. Любая незнакомая фигура, которую можно удовлетворительно описать с помощью Т-образных элементов, может быть с тем же успехом описана как сочетание L-образных элементов и коротких брусков. Однако соотношения элементов в этом случае будут более сложными.

Отказаться от знакомых фигур, неоднократно доказавших свою полезность, – всегда непростая задача. Наша привязанность к этим фигурам очень сильна. Трудно помнить о произвольной природе фигуры, поскольку теперь нам кажется, что мы ее открыли, а не просто придумали для упрощения описания. Каждый раз, сталкиваясь с трудностями при описании какой-то незнакомой фигуры, мы тратим колоссальные усилия, чтобы перебрать все мыслимые сочетания уже знакомых фигур вместо того, чтобы взять новую. Однако наступает момент, когда приходится ставить под сомнение не способ соединения знакомых фигур в попытке получить объяснение, а сами эти фигуры.

Поразительно, сколько ситуаций остались не до конца понятыми только потому, что их упорно пытались объяснить с помощью испытанных знакомых «фигур», правильность которых, на самом деле, нуждалась в проверке!

На рис. 33 показано, как можно разделить Т-образный элемент на четыре одинаковых бруска, образующие букву «Т». С помощью таких брусков мы могли бы объяснить любую фигуру, которую ранее объясняли, используя Т-образный элемент. Сам Т-образный элемент при этом мог бы рассматриваться как стандартный узел, собранный из этих брусков.

На рис. 34 показано, как можно разделить на такие бруски изначальную фигуру (см. рис. 1). Это деление можно было бы выполнить с самого начала, однако сложные соотношения внутри большого набора маленьких брусков сделали бы такое описание фигуры значительно менее удобным, чем описание с помощью Т-образных элементов. Как только Т-образный элемент был выбран и использован на первой стадии описания, было бы полезно сделать еще один шаг и показать, каким образом для тех же целей можно использовать прямоугольные бруски, которые благодаря своей простоте должны найти более широкое применение. Чем проще становится элемент, тем большее количество фигур можно описать с его помощью. Запас стандартных узлов, собранных из базового элемента, облегчает описание других составленных из него фигур, которые иначе были бы чрезмерно сложны.

Подобным процессом сопровождается рост научных знаний, а точнее, накопление вообще любых знаний. Когда доступной информации становится больше, появляется полезная стандартизирующая идея, аналогичная Т-образному элементу, которая оказывается пригодной для объяснения явления. По мере усложнения явлений возникают и находят применение стандартные конструкции, основанные на изначальной идее. Наконец встречается такая ситуация, которую невозможно объяснить с помощью исходной идеи или основанных на ней стандартных конструкций. И тут неожиданно появляется более простая и более универсальная идея, а первоначальная идея оказывается всего лишь производной от этой новой и более универсальной. Благодаря своей простоте новая идея объясняет все наблюдаемые явления.

Мы вряд ли стали бы с самого начала описывать исходную фигуру (см. рис. 1) с помощью маленьких прямоугольных брусков, поскольку такое сложное описание не оправдывало бы себя. К тому же на тот момент нам могли быть еще неизвестны соотношения фигур, необходимые для такого описания, – ведь к идее использовать для описания бруски мы пришли в два шага. Первый шаг – деление фигуры на Т-образные элементы – несложен. Второй – деление самих Т-образных элементов – тоже прост. Трудность состоит в том, что деление самого T-образного элемента на более мелкие составляющие не покажется нам необходимым, пока мы не столкнемся с ситуацией, которая выявит непригодность T-образного элемента. До этого момента Т-образный элемент будет считаться наипростейшим базовым элементом. Наверняка есть множество ситуаций, анализ которых доведен лишь до стадии деления на Т-образные элементы и которые ждут того часа, когда мы поймем, что можно сделать следующий шаг. Может оказаться, что даже брусок не является окончательной элементарной частицей деления (если таковая вообще существует): его можно разделить на два квадрата – и так далее.

Таким образом, процесс описания, который начался с выделения весьма крупных вложенных фигур и их простых соотношений, заканчивается использованием небольших и универсальных элементов, также связанных между собой весьма просто. Однако на пути к этой простоте отношений необходимо было пройти через промежуточные этапы – стандартные узлы, собранные из базовых элементов, затем стандартные узлы, собранные из стандартных узлов, и т. д. Квадрат становится прямоугольным бруском, брусок – Т-образным элементом, Т-образный элемент – I-образным блоком.

  • Читать дальше
  • 1
  • ...
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: