Вход/Регистрация
Занимательная радиация
вернуться

Константинов Александр

Шрифт:

Чтобы стало совсем понятно, представим атом. При огромном увеличении он выглядит как маковое зерно (ядро атома), окружённое тончайшей сферической плёнкой типа мыльного пузыря диаметром несколько метров (электронная оболочка).

И вот из нашего зёрнышка-радионуклида вылетает совсем крошечная пылинка (альфа- или бета-частица). Это радиоактивный распад – процесс физический. Ведь при испускании заряженной частицы заряд ядра изменяется – и образуется новый химический элемент.

А наша пылинка мчится с огромной скоростью – и врезается в электронную оболочку другого – ближайшего атома, выбивая из неё электрон. Атом-мишень, потеряв электрон, превращается в положительно заряженный ион. Но прежнего химического элемента. Такая ионизация – процесс химический: то же самое происходит с металлами при растворении в кислотах.

Вот по такой способности ионизировать атомы излучения и относят к радиоактивным. Ионизирующие излучения могкт возникать не только в результате радиоактивного распада. Их источником может служить реакция деления (атомный взрыв или ядерный реактор); реакция синтеза лёгких ядер (Солнце и другие звёзды, водородная бомба); ускорители заряженных частиц и рентгеновская трубка (сами по себе эти устройства не радиоактивны). Главное отличие радиации – высочайшая энергия ионизирующих излучений.

Различия же альфа-, бета- и гамма-излучений определяются их природой. В конце 19-го века, когда была открыта радиация, никто не знал, что это за зверь. И вновь открываемые «радиоактивные лучи» просто обозначали первыми буквами греческого алфавита.

Первым открыли альфа-излучение, испускаемое при распаде тяжёлых радионуклидов – урана, радия, тория, радона. Природу же альфа-частиц выяснили уже после их открытия. Оказалось, это летящие с огромной скоростью ядра атомов гелия. То есть тяжёлые положительно заряженные «пакеты» из двух протонов и двух нейтронов. Эти «крупнокалиберные» частицы далеко пролететь не могут. Даже в воздухе они проходят не более нескольких сантиметров; а лист бумаги или, скажем, внешний омертвевший слой кожи (эпидермис) задерживает их полностью.

Бета-частицы при ближайшем рассмотрении оказались обычными электронами, но опять же летящими с огромной скоростью. Они значительно легче альфа-частиц, и электрический заряд у них поменьше. Такие «мелкокалиберные» частицы глубже проникают в разные материалы. В воздухе бета-частицы пролетают несколько метров; их способен задержать тонкий лист металла, оконное стекло и обычная одежда. Внешнее облучение обычно приводит к ожогу хрусталика глаза или кожи (подобно солнечному ультрафиолету).

И, наконец, гамма-излучение. Оказалось, оно имеет ту же природу, что и видимый свет, ультрафиолетовые, инфракрасные лучи или радиоволны. То есть гамма-лучи – это электромагнитное (фотонное) излучение, но с чрезвычайно высокой энергией фотонов. Или, другими словами, с очень короткой длиной волны (рис. 2.2).

Гамма-излучение имеет очень высокую проникающую способность. Она зависит от плотности облучаемого материала и оценивается толщиной слоя половинного ослабления. Чем плотнее материал, тем лучше он задерживает гамма-лучи (вот почему для защиты от гамма-излучения чаще используют бетон или свинец). В воздухе гамма-лучи могут пройти десятки, сотни и даже тысячи метров. Для других материалов толщина слоя половинного ослабления показана на рис. 2.3.

Рис. 2.2. Шкала электромагнитных излучений

Рис. 2.3. Значение слоёв половинного ослабления гамма-излучения

При воздействии гамма-излучения на человека могут быть повреждены как кожа, так и внутренние органы и ткани. Если бета-излучение мы сравнили со стрельбой мелкокалиберными пулями, то гамма-излучение – стрельба тончайшими иголками.

По природе и свойствам на гамма-излучение очень похоже излучение рентгеновское. Отличается лишь происхождением: его получают искусственно в рентгеновской трубке.

Существуют и другие виды ионизирующих излучений. Например, при ядерной вспышке или работе ядерного реактора кроме гамма-излучений образуются потоки нейтронов. Космические лучи помимо этих же излучений несут протоны и много чего ещё.

Итак, мы ответили на вопрос о «скорострельности» и «калибре» ионизирующих излучений. Но этот вопрос вовсе не главный. Самое важное – последствия облучения. Можно ли их оценить, зная удельную активность источника и тип излучения? Увы, нет. Помимо свойств радионуклида нам необходимо узнать, как ионизирующие излучения действуют на живой организм.

Об этом – в следующей главе.

Миф третий: самый опасный вид радиации —

гамма-излучение

Со школьных времен у многих сложилось впечатление: по-настоящему опасно именно гамма-излучение. Образуясь при ядерной вспышке, гамма-лучи пролетают многие километры, пронизывают людей насквозь и приводят к лучевой болезни. Именно для защиты от гамма-излучений ядерный реактор окружают бетонной толщей, а не такие крупные источники излучений прячут в свинцовые контейнеры.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: