Шрифт:
Прогнозная аналитика (ПА, англ. predictive analytics) – технология, опирающаяся на опыт (данные) для прогнозирования будущего поведения людей с целью принятия оптимальных решений.
Построенная на фундаменте компьютерных наук и статистики и активно развиваемая благодаря научно-исследовательским программам, прогнозная аналитика превратилась в самостоятельную дисциплину. Но ПА шагнула далеко за пределы теоретической науки и стала мощным практическим инструментом, оказывающим непосредственное влияние на нашу повседневную жизнь. Ежедневно она влияет на миллионы решений, касающихся того, кому позвонить, отправить почту, назначить диагностику или профилактические мероприятия, кого пригласить на свидание, предостеречь или посадить в тюрьму. ПА дает возможность принимать персонализированные решения в отношении каждого человека. Отвечая на массу мелких вопросов, ПА на самом деле может дать нам ответ на ключевой вопрос: как можно повысить эффективность всех этих многосложных функций в таких сферах, как государственное управление, здравоохранение, бизнес, правоохранительная и некоммерческая деятельность?
Таким образом, ПА кардинально отличается от стандартного прогнозирования (которое в английском языке называется словом forecasting). Последнее производит совокупные прогнозные оценки на макроскопическом уровне. Как будет развиваться экономика? Какой кандидат в президенты наберет больше голосов в Огайо? В то время как совокупная прогнозная оценка скажет вам, сколько стаканчиков мороженого будет куплено в штате Небраска в следующем месяце, ПА позволит узнать, какие именно жители Небраски вероятнее всего соблазнятся на эту покупку.
ПА является ведущим направлением в рамках растущей тенденции по принятию решений, «основанных на данных», опирающихся не на «чутье», а на объективные эмпирические факты. Но как только вы вступаете в эту область, вы тут же сталкиваетесь с массой замысловатых названий, таких как наука о данных, бизнес-аналитика, обработка больших данных и т. п. Хотя ПА входит в каждое из перечисленных определений, эти красочные термины имеют больше отношения к общей культуре и сферам профессиональной компетенции специалистов, занимающихся инновационными и творческими манипуляциями с данными, чем к конкретным технологиям или методам. Это многозначные термины; иногда они могут означать всего лишь стандартные отчеты в Excel – т. е. вещи важные и требующие значительного мастерства, но не опирающиеся на науку или сложную математику. Другими словами, в каждом конкретном случае их наполнение субъективно. Как однажды выразился Майк Лукидес, вице-президент инновационного издательства O’Reilly: «Наука о данных похожа на порнографию – когда видишь, понимаешь, что это». Еще один термин data mining – «извлечение знаний из данных», или интеллектуальный анализ данных – может использоваться как синоним прогнозной аналитики, но эта образная метафора может описывать и другие способы добычи знаний из данных, а также часто употребляется в более широком смысле.
Организационное обучение
Ведущие компании в эпоху Интернета, в том числе Google и Amazon… имеют бизнес-модели, которые опираются на предиктивные модели, основанные на машинном обучении.
Профессор Васант Дхар из Школы бизнеса Стерна при Нью-Йоркском университетеЕсли рассматривать организацию как своего рода «мегачеловека», не означает ли это, что она нуждается в «мегаобучении»? Люди объединяются в группу – будь то компания, правительство, больница, университет, благотворительная организация и т. п., – чтобы служить интересам ее членов и тех, кого она обслуживает. Будучи сформированной, группа выигрывает от разделения труда, взаимодополняющих навыков и эффекта масштаба. Возможности группы как целого намного превосходят сумму возможностей отдельных ее членов. Коллективное обучение является следующим логическим шагом для организации, позволяющим еще больше увеличить ее коллективный потенциал. Точно так же, как торговый агент со временем учится на своем положительном и отрицательном опыте взаимодействия с потенциальными клиентами, на своих успехах и неудачах, ПА дает в руки организации инструмент, посредством которого она может учиться на опыте, приобретаемом ею через отдельных ее членов и компьютерные системы. На самом деле организация, которая не использует получаемые ею данные таким образом, похожа на человека с фотографической памятью, который не умеет с пользой применять этот дар.
За редкими исключениями именно организации, а не отдельные люди, максимально выигрывают от использования ПА. Организации принимают огромное количество операционных решений, но, поскольку по природе своей они неэффективны и расточительны, существует значительный простор для оптимизации и улучшений. Маркетинговые службы делают массовые почтовые рассылки, но значительная часть рекламного материала, для изготовления которого тратится немало денег и вырубается немало деревьев, попадает прямиком в мусорную корзину. По оценкам, 80 % всех сообщений по электронной почте является спамом. Рискованным заемщикам выдается слишком много кредитов. Заявления на предоставление государственных пособий накапливаются в огромных количествах и не рассматриваются в срок. И это при том, что организации располагают изобилием данных, которые могут быть использованы для прогнозирования и соответствующего улучшения операций.
В коммерческом секторе прибыль является движущей силой. Только представьте себе, какие вырисовываются многообещающие перспективы, если повседневные рутинные операции станут более эффективными, целевой маркетинг – более точным, если будет предотвращаться больше попыток мошенничества, выдаваться меньше кредитов ненадежным заемщикам и привлекаться больше онлайн-клиентов. Позволяя оптимизировать критически важные операции, ПА существенно увеличивает коллективные возможности организации и ее эффективность в целом.
Новая модная профессия: аналитик данных
Самой привлекательной профессией в ближайшие десять лет будет профессия статистика.
Хэл Вэриен, главный экономист Google и профессор Калифорнийского университета в Беркли, 2009 годАльтернатива прогнозированию будущего – анализ прошлого… а для этого нужно всего лишь иметь хорошую память.
Шелдон Купер, физик-теоретик, главный персонаж телесериала «Теория Большого взрыва»Но прибыль – не единственный мотиватор. Источник энергии, главная сила, движущая эту махину вперед, – это «Сила умников»! Я имею в виду специалистов-практиков и их энтузиазм. По правде говоря, моя страсть к прогнозной аналитике проистекает вовсе не из ее ценности для организаций. Я занимаюсь этим ради собственного удовольствия. Идея, что машины действительно могут учиться, завораживает меня, и гораздо больше меня интересует то, что происходит внутри черного ящика, чем полезность происходящего для внешнего мира. Возможно, именно этот движущий мотив и отличает настоящего «умника» от других людей. Мы любим технологии; мы одержимы ими. Показательный пример: ведущее программное обеспечение с открытым исходным кодом, используемое в прогнозной аналитике, название которой состоит из одной буквы R (умники любят такие странные названия), имеет быстро расширяющуюся базу пользователей и добровольцев-разработчиков, которые совершенствуют его функциональные возможности и обеспечивают поддержку. Огромное число профессионалов и любителей стекаются на публичные конкурсы в сфере ПА, для которых характерен дух не столько состязательности, сколько сотрудничества. Мы работаем в организациях или консультируем их. Мы – востребованные специалисты, поэтому много летаем. И летаем высшим классом.