Шрифт:
Я в принципе не возражал, что Дипак меня характеризует как редукциониста, однако ощетинивался, когда он говорил это вслух, потому что произносил он это таким тоном, что я чувствовал себя неловко и насупленно: можно подумать, будто человек, у которого есть душа, не может разделять моих взглядов. По чести сказать, на собраниях поклонников Дипака я иногда ощущал себя, как ортодоксальный ребе на съезде производителей свинины. Мне всегда задавали наводящие вопросы типа: «Ваши уравнения сообщают вам, что я переживаю, глядя на картины Вермеера или слушая симфонию Бетховена?» или «Если ум моей жены на самом деле и волны, и частицы одновременно, как вы объясните ее любовь ко мне?» Приходилось признавать, что ее любовь к нему я объяснить не могу. С помощью уравнений я никакую любовь объяснить не в силах. С моей точки зрения, речь вообще не об этом. Речь вот о чем: как инструмент понимания физического мира, если не нашего умозрительного опыта (во всяком случае, пока), математические уравнения достигли беспрецедентного успеха.
Пусть мы не умеем рассчитывать погоду на следующую неделю, отслеживая движения каждого атома и применяя фундаментальные принципы атомной и ядерной физики, однако есть наука метеорология, использующая сложные математические модели, и завтрашнюю погоду она предсказывает неплохо. Мы применили науку и к исследованию океана, света и электромагнетизма, свойств материалов, заболеваний и десятков других аспектов нашей повседневности так, чтобы использовать накопленное знание в блестящих практических целях, о каких всего несколько столетий назад никто и не мечтал. Сегодня – по крайней мере, среди ученых, – в действенности математического подхода к пониманию физического мира практически никто не сомневается. Однако господствующими подобные взгляды стали далеко не сразу.
Принятие современной науки как метафизической системы, основанной на видении, что природа ведет себя в соответствии с определенными закономерностями, началось с греков, но наука не добилась первого убедительного успеха в применении своих законов вплоть до XVII века. Огромен скачок от философских идей Фалеса, Пифагора и Аристотеля к взглядам Галилея и Ньютона. И все же две тысячи лет – многовато даже для такого скачка.
Первым камнем преткновения на пути принятия греческого наследия и дальнейшего строительства с опорой на него стало завоевание римлянами Греции в 146 году до н. э. и Месопотамии – в 64-м до н. э. Расцвет Рима стал началом многовекового заката интереса к философии, математике и науке даже среди грекоговорящей интеллектуальной верхушки, поскольку римляне с их практическим умом не слишком ценили эти области исследования. Замечание Цицерона [137] дивно передает презрение римлян к теоретическим изысканиям: «Греки, – говорил он, – премного почитали геометров, и, соответственно, блистательнее всего у них развивалась математика. Однако мы определили предел этому искусству полезностью в измерении и счете». Так все и было: за примерно тысячу лет существования Римской республики и ее наследницы, Римской империи, римляне добились масштабных и впечатляющих инженерных успехов благодаря, разумеется, навыкам в измерениях и счете, однако, насколько нам известно, в тот период не возникло ни единого римского математика, достойного упоминания. Этот поразительный факт свидетельствует о громадном воздействии культуры на развитие математики и науки.
137
Morris Kline, Mathematical Thought from Ancient to Modern Times, т. 1 (Oxford: Oxford University Press, 1972), стр. 179.
Хоть Рим и не обеспечил благоприятных для науки условий, после распада Западной Римской империи в 476 году н. э. все стало еще хуже. Города сжались, установилась феодальная система [138] , христианство завладело Европой, и центрами интеллектуальной жизни сделались провинциальные монастыри, а чуть позднее – школы при соборах, а это значит, что образование сосредоточилось на религиозных вопросах, исследования же природы стали считаться легкомысленными и недостойными. Постепенно интеллектуальное наследие греков было для Западного мира утеряно.
138
Kline, Mathematical Thought, стр. 204; J. D. Bernal, Science in History, т. 1 (Cambridge, Mass.: MIT Press, 1971), стр. 254.
К счастью для науки, в арабском мире правящий мусульманский класс, напротив, счел греческое знание ценным. Речь не о том, что в арабском мире искали знания ради него самого – такой поиск поощрялся исламской идеологией не больше, чем христианством. Однако состоятельные арабские покровители желали финансировать переводы греческих научных трудов на арабский, поскольку считали, что греческая наука – штука полезная. И, конечно же, несколько сотен лет [139] средневековые исламские ученые сами добивались замечательных успехов в прикладной оптике, астрономии, математике и медицине, обогнав европейцев, чья интеллектуальная традиция замерла без развития [140] .
139
Kline, Mathematical Thought, стр. 211.
140
Средневековый период длится с 500 до 1500 года н. э. (или же, по некоторым определениям, до 1600-го). В любом случае он охватывает, с некоторым перекрытием, эпоху между культурными достижениями Римской империи и расцветом науки и искусств Возрождения. Об этом времени в XIX веке пренебрежительно говорили как о «тысяче лет без бани».
Тем не менее, к XIII–XIV векам [141] , когда европейцы начали пробуждаться от длительной дремы, наука в исламском мире пришла в значительный упадок. Случился он, похоже, по нескольким причинам. Во-первых, консервативные религиозные силы принялись навязывать суженное понимание практической применимости, кою считали единственным приемлемым оправданием научным занятиям. Во-вторых, для процветания науке нужно процветающее общество, у которого есть возможности частного или государственного покровительства, поскольку большинство ученых не могло выживать в условиях открытого рынка. В поздние Средние века, однако, арабский мир подвергался атакам внешних сил – от Чингисхана до крестоносцев, а изнутри его раздирали междоусобицы. Ресурсы, прежде выделявшиеся на искусства и науки, теперь поглощала война – и борьба за выживание.
141
David C. Lindberg, The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, 600 B.C. to A.D. 1450 (Chicago: University of Chicago Press, 1992), стр. 180–181.
Еще одна причина упадка наук: школы, составившие значимую часть интеллектуальной жизни в арабском мире, не ценили своего положения. Эти школы назывались медресе и были благотворительными фондами, существовавшими на религиозные пожертвования, а основатели и попечители этих школ к наукам относились с подозрением. В результате все обучение должно было сосредоточиваться на религии и исключать философию и науку [142] . Любое преподавание этих предметов – вне школы. За неимением учреждения, поддерживавшего и объединявшего их, ученые отдалились друг от друга, что создало серьезную преграду для углубленного научного обучения и исследований [143] .
142
Toby E. Huff, The P"ase of Early Modern Science: Islam, China, and the West (Cambridge, U.K.: Cambridge University Press, 1993), стр. 74.
143
Там же, стр. 77, 89. Хафф и Джордж Салиба расходятся во мнениях о происхождении и особенностях исламской науки, особенно в отношении астрономии, что привело к плодотворным и вдохновенным обсуждениям в этом поле исследования. Подробнее о доводах Салибы см. Islamic Science and the Making of the European Renaissance (Cambridge, Mass.: MIT Press, 2007).
Ученые не могут существовать в вакууме. Даже величайшие невероятно много получают от общения с коллегами в своей области. Недостаток контакта между исследователями в исламском мире создал неблагоприятную среду для перекрестного умственного опыления, необходимого прогрессу. Более того, без полезной здоровой критики стало непросто держать в рамках распространение теорий, которым не хватало эмпирической базы, и трудно собрать критическую массу поддержки тем ученым и философам, кто сомневался в привычных истинах.