Шрифт:
Обдумав все это, мы начали с образцов вымерших животных, таких как сибирский мамонт. Мы запустили планомерные эксперименты с контролями. Например, мои студенты Олива Хандт и Матиас Хёсс проводили опыты с использованием праймеров, специфичных для человеческой мтДНК. Я пришел в смятение, когда они уверенно выделили человеческую ДНК не только из животных образцов, но и из контрольных вытяжек, вообще без добавок. Мы повторили эксперимент с новыми реагентами, “свежедоставленными” в лабораторию, но результат был тот же. И еще раз, и еще, и еще, месяц за месяцем – человеческая ДНК присутствовала везде и всюду. Меня охватило отчаяние. Чему верить? И как вообще доверять результатам, если только они полностью не совпадут с ожидаемыми (например, у сумчатого волка ДНК-последовательность соответствует сумчатым)? А если доверять только ожидаемым результатам, то зачем вообще работать в этой области? Мы же никогда не откроем ничего неожиданного, того, ради чего и существуют настоящая наука и настоящий эксперимент.
Каждый день я уходил домой разочарованный и измотанный постоянными провалами. Но постепенно я стал понимать, насколько легкомысленно относился к проблеме занесенных загрязнений. Очевидный логический вывод, следующий из чрезвычайной чувствительности ПЦР, мне в голову почему-то не пришел. И в Беркли, и в первые месяцы в Мюнхене мы экстрагировали ДНК из музейных образцов, работая на общих лабораторных столах, где в обращении было огромное число ДНК и человека, и разных других исследуемых организмов. Даже если мельчайшее количество современной ДНК попадет в раствор, содержащий экстракт ископаемой ДНК, современная ДНК возьмет верх над древним материалом. Такое запросто могло произойти, даже если мы всего лишь забыли поменять пластиковую насадку на пипетке.
Стало понятно, что нам придется полностью отделить – причем отделить физически – работы с древними ДНК от всех остальных лабораторных проектов. В особенности стоило обратить внимание на изоляцию ПЦР, при которой получались триллионы молекул. Нам нужна была лаборатория, которая занималась бы исключительно выделением и амплификацией древнего материала. На нашем этаже нашлась маленькая комнатка без окон, мы ее полностью вычистили и покрасили, затем задумались, как бы избавиться от тех ДНК, что неминуемо проникли в лабораторию с новыми столами и инструментами. Меры мы приняли самые жесткие. Абсолютно все в лаборатории было вымыто хлоркой, которая окисляет ДНК. К потолку приделали ультрафиолетовые лампы, их включали на ночь, так как ультрафиолет разрушает молекулы ДНК. Мы купили новые реагенты – и первая в мире “чистая” лаборатория для исследования древнего материала заработала (рис. 4.1). И все сразу поменялось. Наши контрольные растворы перестали выдавать ДНК, как им и полагалось. А из рабочих растворов, как и полагалось, определялась ДНК. Но мало-помалу, спустя несколько месяцев, в контроле опять стали появляться ДНК. Я рвал и метал. Ну что опять?! Мы выбросили все реагенты и закупили новые.
Рис. 4.1. Олива и Матиас в первой “чистой комнате” в лаборатории в Мюнхене. Фото: Мюнхенский университет
И опять ситуация исправилась, но ненадолго. Я прямо-таки с ума сходил на почве “чистоты в чистой комнате”, а еще мы установили изуверские правила работы в “чистой комнате”, и эти правила действуют и соблюдаются до сих пор. Во-первых, доступ в комнату был открыт только тем, кто непосредственно проводил эксперимент, в нашем случае только Матиасу и Оливе. Перед тем как войти, они облачались в специальные халаты, шапочки, бахилы, надевали перчатки и закрывали лицо щитком. Еще несколько тщетных экспериментов – и у нас добавилось новое правило: входить в комнату можно только утром непосредственно из дому. Если им приходилось пройти через помещения, где содержались продукты ПЦР, вход в “чистую комнату” на весь день им был закрыт. Все химикаты поступали прямо в “чистую комнату”, мы купили новое оборудование, которое тоже привезли прямо туда. Постепенно ситуация улучшалась. И все равно новые реагенты обязательно тестировались на присутствие человеческой ДНК, и не однажды целую партию отправляли обратно. Матиаса и Оливу оставалось только пожалеть: они-то рассчитывали позаниматься ДНК древних людей и вымерших животных, а вместо этого попали в кабалу утомительных процедур, по сто раз перепроверяли реагенты и волновались, как бы не занести лишней ДНК.
В конце концов наши усилия начали приносить плоды, и общее настроение поднялось. До сих пор мы исследовали мягкие ткани, кожные или мышечные. Но я вспомнил, как в Упсале успешно вытягивал ДНК из хрящей мумий, то есть из ткани, похожей на костную. Если бы удалось выделить ДНК из древних костей, а не из мягких тканей, то перед нами открылось бы множество новых возможностей, так как от древних людей остаются в основном кости. В 1991 году Эрика Хагельберг и Дж. Б. Клегг из Оксфордского университета опубликовали статью с описанием процесса выделения ДНК из костей древних людей и животных [19] . Поэтому, взяв наконец под контроль инородные загрязнения, Матиас занялся освоением технологий выделения ДНК из костей древних животных. В этом случае вероятность перепутать целевую ДНК с загрязнениями значительно уменьшалась: ведь с животными мы почти не работали. Один из таких методов, описанных в литературе, предлагал протокол для экстрагирования ДНК микроорганизмов. Основан он на том, что ДНК в условиях солевого раствора высокой концентрации связывается с кремниевыми микрочастицами – в данном случае с тончайшей стеклянной пылью. Затем кремниевые частицы тщательно отмываются, чтобы избавиться от всех нежелательных компонентов, которые могут вмешаться в ПЦР. И после этого молекулы ДНК отделяют от кремниевых частиц методом понижения концентрации соли. Конечно, процесс экстрагирования ДНК оказался весьма громоздким, но он работал и приносил результаты.
19
E. Hagelberg and J.B. Clegg. Isolation and characterization of DNA from archaeological bone. Proceedings of the Royal Society B 244:1309, 45–50 (1991).
Мы с Матиасом опубликовали описание этого метода в 1993 году; в том эксперименте мы работали с костями плейстоценовой лошади и получили последовательность ее мтДНК. Так мы доказали, что можем надежно реконструировать ДНК из костей возрастом 25 тысяч лет. А это, между прочим, была первая полученная последовательность ДНК доледниковых времен [20] . Придуманный нами тогда протокол с небольшими модификациями используют до сих пор. Все предшествующие треволнения поместились в первое, вступительное предложение статьи: мы написали, что нашу молодую область знаний “омрачают проблемы”. Но и это постепенно менялось. На самом деле Матиас и Олива, сами того не сознавая, заложили фундамент для тех открытий, что нам предстояли в следующие несколько лет. В 1994 году Матиас выделил первую последовательность ДНК из сибирского мамонта: он работал с образцами четырех особей, возрастом от 9700 до 50 тысяч лет. Мы отправили результаты в Nature, где они и были опубликованы вместе с похожими результатами Эрики Хагельберг, получившей ДНК из костей двух мамонтов [21] . И, несмотря на скромную длину реконструированных фрагментов мтДНК, все же здесь просматривались серьезные перспективы, если нуклеотидов окажется побольше. К примеру, мы заметили множество различий между последовательностями ДНК у четырех особей мамонтов. Такая информация не только способна прояснить родственные связи между мамонтами и двумя существующими видами отряда – индийским и африканским слоном, – но и позволяет проследить историю мамонтов от позднего плейстоцена до самого их вымирания около 4000 лет назад. У древней ДНК появилось наконец что отпраздновать.
20
M. H"oss and S. P"a"abo. DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Research 21:16, 3913–3914 (1993).
21
M. H"oss and S. P"a"abo. Mammoth DNA sequences. Nature 370, 333 (1994); Erika Hagelberg et al. DNA from ancient mammoth bones. Nature 370, 333–334 (1994).
В то же время выяснилось, что новые технологии выделения древней ДНК приложимы в неожиданных областях биологии. В один прекрасный день у меня на пороге появился университетский зоолог Феликс Кнауэр и завел разговор о применении наших ДНК-методик к “охранной генетике”, то есть в той области знаний, где генетика служит сохранению редких и исчезающих видов. Феликсу предстояло исследовать последнюю сохранившуюся популяцию итальянских медведей, обитающих на южных альпийских склонах, но в качестве материала для исследования у него был только медвежий помет. Я предложил Феликсу и нескольким студентам попробовать наш метод “кремниевого” выделения в сочетании с ПЦР на этом специфическом материале. В результате мы сумели амплифицировать ДНК медведя и показали, что можно работать и с таким материалом. До этого, чтобы получить ДНК дикого животного, его приходилось убивать или усыплять и брать кровь у сонного, что рискованно и для животного, очевидно, неприятно. Теперь же можно изучать генетические связи итальянского медведя и его европейских сородичей без всяких сложностей. Из того же материала мы реконструировали генетическую составляющую растений, которые шли медведю в пищу, так что и о медвежьей диете кое-что смогли рассказать. Все эти результаты мы опубликовали в небольшой статье в Nature [22] . С тех пор выделение ДНК из помета стало повсеместной практикой в области генетики редких животных.
22
M. H"oss et al. Excrement analysis by PCR. Nature 359, 199 (1992).
Пока мы корпели над методиками распознавания и устранения занесенных чужеродных ДНК, в Nature и в Science одна за другой появлялись эффектные работы – их авторы будто бы добивались грандиозных успехов, рядом с которыми бледнели наши вымученные фрагменты ДНК возрастом в какие-нибудь несчастные пару десятков тысяч лет. Мода на такие работы началась году в девяностом, я тогда еще работал в Беркли. Ученые из Калифорнийского университета в Ирвайне опубликовали ДНК-последовательность ископаемой Magnolia latahensis из миоценовых отложений в Айдахо; возраст отложений составлял 17 миллионов лет [23] . Прямо ошеломительное открытие, и казалось, что теперь мы можем изучать эволюцию в невиданных масштабах в миллионы лет – так, пожалуй, и до динозавров недолго добраться! Но я, по правде сказать, был настроен скептически. Еще в 1985 году, когда работал у Томаса Линдаля, я на собственном опыте убедился, что фрагменты ДНК могут сохраниться спустя тысячи лет, но о миллионах даже речи не идет. Мы с Аланом Уилсоном произвели на основе работ Линдаля некоторую экстраполяцию, в которой проверили длительность жизни ДНК в присутствии воды и при усредненных условиях: при температурах не самых низких и не самых высоких, если среда не слишком щелочная и не слишком кислая. По нашим подсчетам выходило, что по прошествии нескольких десятков тысяч лет – а при самых благоприятных условиях, положим, и сотен тысяч – распадутся последние молекулы. Но кто знает – возможно, те отложения в Айдахо создавались при каких-то уж совсем исключительных условиях. Перед тем как отправиться в Германию, я посетил эти местонахождения. Они были сложены темными глинами, раскопки производились бульдозером. Первые же снятые слои обнажили зеленые листья магнолии, которые мгновенно почернели, оказавшись на воздухе. Я собрал много этих листьев и привез с собой в Мюнхен. В своей новой лаборатории я попытался выделить их ДНК и получил множество длинных фрагментов. Но далее, прогнав их через ПЦР, мне не удалось амплифицировать ни одного фрагмента растительной ДНК. Поскольку у меня было подозрение, что все длинные фрагменты последовательности принадлежат бактериям, а не растениям, я провел реакцию с бактериальными праймерами – и немедленно получил положительный результат. Очевидно, в глине развивались бактерии. Единственное возможное объяснение: группа из Ирвайна, работающая с генами растений и не имеющая специальной “чистой комнаты” для исследования древних ДНК, амплифицировала какую-то занесенную ДНК и решила, что это ДНК магнолии. В 1991 году мы с Аланом опубликовали наши теоретические подсчеты в статье о стабильности ДНК [24] , а в следующей статье описали мои неудачные попытки получить ДНК из ископаемых листьев из Айдахо [25] . За год до того Алан слег с тяжелой формой лейкемии, так что настроение было очень печальное. Несмотря на болезнь, он внес весомый вклад в обе статьи. Он умер в июле того же года в возрасте всего пятидесяти пяти лет.
23
E.M. Golenberg et al. Chloroplast DNA sequence from a Miocene Magnolia species. Nature 344, 656–658 (1990).
24
S. P"a"abo and A.C. Wilson. Miocene DNA sequences – a dream come true? Current Biology 1, 45–46 (1991).
25
A. Sidow et al. Bacterial DNA in Clarkia fossils. Philosophical Transactions of the Royal Society B 333, 429–433 (1991).