Шрифт:
На рис. 26-2 показаны схематические обозначения фотосопротивления. Стрелки показывают, что это — светочувствительное устройство. Иногда для обозначения светочувствительного устройства используется греческая буква лямбда .
Рис. 26-2. Схематические обозначения фотосопротивления.
Фотосопротивления используются для измерения интенсивности света в фотографическом оборудовании, в охранных датчиках, в устройствах автоматического открывания дверей, в различном тестирующем оборудовании для измерения интенсивности света.
Фотогальванический элемент (солнечный элемент) преобразует световую энергию непосредственно в электрическую. Батареи солнечных элементов применяются главным образом для преобразования солнечной энергии в электрическую энергию.
Солнечный элемент — это устройство на основе р-n-перехода, выполненное из полупроводниковых материалов.
В большинстве случаев их делают из кремния. На рис. 26-3 показано устройство солнечного элемента.
Рис. 26-3. Устройство солнечного элемента.
Слои p– типа и n– типа образуют р-n– переход. Металлическая подложка и металлический контакт являются электрическими контактами. Они проектируются с большой площадью поверхности. Свет, попадая на поверхность солнечного элемента, передает большую часть своей энергии атомам полупроводникового материала. Световая энергия выбивает валентные электроны с их орбит, создавая свободные электроны.
Вблизи обедненного слоя электроны притягиваются материалом n– типа, создавая небольшое напряжение вдоль р-n– перехода. При увеличении интенсивности света это напряжение увеличивается. Однако не вся световая энергия, попадающая в солнечный элемент, создает свободные электроны. В действительности, при сравнении получаемой от него электрической мощности с мощностью падающей световой энергии легко увидеть, что солнечный элемент — это довольно неэффективное устройство с максимальным коэффициентом полезного действия порядка 15 %.
Солнечные элементы дают низкое выходное напряжение 0,45 вольта при токе 50 миллиампер. Их необходимо соединять в последовательно- параллельные цепи для того, чтобы получить желаемое выходное напряжение и ток.
Солнечные элементы применяются для измерения интенсивности света в фотографическом оборудовании, для декодирования звуковой дорожки в кинопроекторах и для зарядки батарей на космических спутниках.
Схематические обозначения солнечных элементов показаны на рис. 26-4. Положительный вывод обозначается знаком плюс (+).
Рис. 26-4. Схематические обозначения солнечного элемента.
Фотодиод также использует р-n– переход и его устройство подобно устройству солнечного элемента. Он используется так же, как и фотосопротивление в качестве резистора, сопротивление которого меняется при освещении. Фотодиоды — это полупроводниковые устройства, которые изготовляются главным образом из кремния. Это делается двумя способами. Первый способ — создание простого р-n– перехода (рис. 26-5).
Рис. 26-5. Фотодиод с р-n– переходом.
При другом способе между слоями p– типа и n– типа вставляется слой нелегированного полупроводника, образуя p-i-n фотодиод (рис. 26-6).
Принципы работы фотодиода с р-n-переходом такие же как у солнечного элемента, за исключением того, что он используется для управления током, а не для создания его.
К фотодиоду прикладывается обратное напряжение смещения, формирующее широкий обедненный электронами слой. Когда свет попадает в фотодиод, он попадает в обедненный слой и создает там свободные электроны. Электроны притягиваются к положительному выводу источника смещения. Через фотодиод в обратном направлении течет малый ток. При увеличении светового потока увеличивается число свободных электронов, что приводит к росту тока.
P-i-n фотодиод имеет слой нелегированного материала между областями р и n. Это эффективно расширяет обедненный слой. Более широкий обедненный слой позволяет p-i-n фотодиоду реагировать на свет с более низкими частотами. Свет с более низкими частотами имеет меньшую энергию и, следовательно, должен глубже проникать в обедненный слой перед созданием свободных электронов. Более широкий обедненный слой дает больше возможностей для создания свободных электронов, p-i-n фотодиоды являются более эффективными во всех отношениях.