Шрифт:
«С»: Как прошлогодний снег! Это не для профессионалов. В нашей разработке будут употребляться следующие типы: из однооборотных — СП3—13а; СП5—16 В(А, Б, В,). Из многооборотных — СП5—3; СП5—2.
«А»: Ну, а переменные?
«С»: Прежде всего в приемнике нам потребуется один многооборотный переменный резистор.
«А»: Для подачи напряжения на варикапы?
«С»: Именно для этого! Возможно применение таких типов, как СП5—39; СП5—44. Хотя я предпочел бы ППМЛ!
«Н»: Почему именно его?
«С»: Этот очень хороший, износоустойчивый десятиоборотный потенциометр обладает повышенной надежностью. А это немаловажно!
«А»: А что можно сказать о КОНДЕНСАТОРАХ? Не вообше, а конкретно?
«С»: Система из двух обкладок или пластин, разделенных диэлектриком и обладающая способностью накапливать электричество, называется конденсатором. Емкость конденсатора, как известно, есть физический параметр, определяемый отношением количества накапливаемых на отрицательном полюсе электронов к приложенному напряжению. УДЕЛЬНАЯ ЕМКОСТЬ — отношение емкости к объему (либо массе) конденсатора. НОМИНАЛЬНАЯ ЕМКОСТЬ — это та емкость, которая указана на конденсаторе заводом-изготовителем. Она гостируема и составляет некоторый стандартный ряд.
«А»: Однако фактическая емкость каждого конденсатора отличается от номинальной. Но в пределах допуска.
«С»: Да, есть такой параметр, как ДОПУСТИМОЕ ОТКЛОНЕНИЕ ЕМКОСТИ. Нам очень важен такой параметр, как ЭЛЕКТРИЧЕСКАЯ ПРОЧНОСТЬ КОНДЕНСАТОРА.
«А»: Это она характеризуется НОМИНАЛЬНЫМ РАБОЧИМ НАПРЯЖЕНИЕМ? То есть максимальным напряжением, при котором конденсатор может надежно работать в течение тысяч часов?
«С»: Ты прав, мой друг! Просто для справки — различают еще ИСПЫТАТЕЛЬНОЕ НАПРЯЖЕНИЕ, а также ПРОБИВНОЕ.
«А»: Есть еще такой параметр, как СОПРОТИВЛЕНИЕ ИЗОЛЯЦИИ КОНДЕНСАТОРА. Она представляет собой отношение напряжения, приложенного к конденсатору к его току утечки.
«С»: Следует заметить, что емкость конденсатора зависит от частоты приложенного напряжения. И хотя, чисто теоретически, конденсаторы не рассеивают энергию в виде тепла, реальные конденсаторы, тем не менее, характеризуются потерей мощности. Это связано с проводимостью диэлектрика, нагревом металлических элементов и т. п. Очень важной характеристикой конденсатора является ТКЕ — ТЕМПЕРАТУРНЫЙ КОЭФФИЦИЕНТ ЕМКОСТИ.
«А»: Но ведь ТКЕ — обратимый параметр? То есть если температура становится прежней, то и емкость соответственно?
«С»: Да, к общему удовольствию! А вообще ТКЕ — представляет собой относительное изменение емкости при изменении температуры на 1 °C.
«А»: Однако мало радости доставляет ТКЕ если конденсатор входит в состав высокочастотной резонансной цепи!
«С»: Мало — это не то слово! Особенно это касается гетеродинов! Поэтому, в зависимости от величины ТКЕ, конденсаторы разделяются на группы. Каждая имеет свое значение ТКЕ!
«Н»: Давайте, на всякий случай, составим на сей счет небольшую таблицу!
«А»: Это разумно! Итак, смотри таблицу (табл. 18.1).
«Н»: А почему бы ВСЕ конденсаторы не выпускать на основе керамики МП 0 и все дела?
«С»: Это и ненужно, и невозможно! Ненужно, поскольку в состав контуров входит, как известно, еще и катушка индуктивности, которая (как увидим позднее) тоже характеризуется аналогичной величиной ТКИ (температурный коэффициент индуктивности). А применение керамики типа МП 0 не позволило бы ввести в контур термокомпенсацию!
«А»: А невозможно, очевидно, потому, что в керамических конденсаторах большой емкости применена керамика с колоссальным значением диэлектрической проницаемости! И это понятно, если принять во внимание степень миниатюрности этих конденсаторов.
«С»: Но вот с ТКЕ таких конденсаторов дело обстоит хуже! Я занес в таблицу группы от Н—10 до Н—90 включительно!
«Н»: А что означают звездочки?
«С»: Только тот факт, что для этих групп характерен не ТКЕ, а относительное изменение их емкости в интервале температур от -60 °C до +85 °C соотнесенное с их емкостью при +20 °C.
«А»: Будем ли подробно говорить о классификации конденсаторов?
«С»: Сейчас нет, поскольку об этом будем упоминать при описании компонентной базы, требующейся для практической реализации узлов приемника. Отметим только, что в нашем случае наиболее применимыми будут керамические конденсаторы типов: КМ (монолитные), К10—17 и К10—23 (керамические прямоугольные). А также некоторые другие.
«Н»: А почему вы ничего не говорите об электролитах?