Шрифт:
Первым делом Шрёдингер, разумеется, решил рассчитать при помощи нового метода атом водорода. Он заметил, что электрическое поле атомного ядра одинаково во всех направлениях. Из этого следует, что задача должна обладать сферической симметрией. Используя эту симметрию, Шрёдингер получил семейство решений, которые могли быть заданы тремя различными квантовыми числами — в точности теми же числами, которые предложили Бор и Зоммерфельд. К его восторгу, новая формула, которая приводится во всех современных учебниках физики как уравнение Шрёдингера, давала правильный результат, чудесным образом воспроизводя модель атома Бора — Зоммерфельда.
В январе 1926 года Шрёдингер закончил первую статью на эту тему. Она называлась «Квантование как задача о собственных значениях». Совершение такого значительного прорыва всего лишь за пару месяцев было практически беспрецедентным подвигом. Он отправил статью Зоммерфельду, который был потрясен его блестящим достижением. Зоммерфельд ответил, что статья стала для него «громом среди ясного неба»{62}.
Шрёдингер с огромным уважением относился к Планку и Эйнштейну и с нетерпением ждал их реакции. К счастью, отзывы были в основном положительными. Как вспоминала Энни, «Планк и Эйнштейн преисполнились энтузиазма с самого начала… Планк сказал: “Я смотрю на это, как ребенок, озадаченный головоломкой”»{63}.
Шрёдингер поблагодарил Эйнштейна в личном письме: «Ваше с Планком одобрение для меня ценнее, чем половина мира. Кроме того, это уравнение… возможно, никогда бы не появилось (по крайней мере, я бы его не открыл), если бы ваша работа не сделала для меня очевидной важность идей де Бройля» {64} .
К тому времени уже были опубликованы несколько работ Гейзенберга, Борна и Йордана с изложением теории матричной механики. Дирак предложил удобные математические обозначения для описания квантовых правил с использованием символов бра и кет [10] , что сделало матричную механику гораздо более изящной и понятной. Естественно, возник вопрос о связи волновой механики с матричной, поскольку каждая из них точно описывала атом водорода, хотя и разными способами. Шрёдингер был достаточно осторожен и подчеркивал, что его теория была разработана независимо и совершенно не основывалась на работах Гейзенберга.
10
Название символов «бра» и «кет» происходит от английского слова braket (скобка). Известные также как обозначения Дирака, бра-векторы записываются как <|>, а кет-векторы — как <|>. — Примеч. ред.
Несмотря на то что теории Шрёдингера и Гейзенберга появились независимо друг от друга и что Шрёдингер, естественно, отдавал предпочтение своей, он осознавал, насколько важно продемонстрировать их эквивалентность. Зоммерфельд сразу понял, что теории совместимы — но совместимость необходимо было доказать математически. И вскоре Шрёдингер представил доказательство, которое Паули подкрепил еще более тщательными и скрупулезными выкладками. После установления эквивалентности обеих теорий Шрёдингер начал доказывать, что его подход был более материалистичен и обоснован с физической точки зрения. В конце концов, ведь в его описании электроны непрерывно перемещались в пространстве и во времени, а не прыгали из одного состояние в другое в абстрактном мире матриц.
В царстве призраков
После серьезных размышлений о следствиях обеих теорий Борн обнаружил в каждой из них слабые стороны, в том числе и в той, которую он сам помог разработать. Бор знал, что матричную механику критикуют за то, что она слишком абстрактна. Волновой подход выглядел более конкретным и наглядным. Он хорошо моделировал процессы, происходящие в реальном физическом пространстве, например столкновения частиц. Борну пришлось признать его изящество, ясность и значимость.
Однако волновая механика предлагала неадекватное описание движения свободного электрона в пустом пространстве. Такая картина не соответствовала экспериментальным данным, которые показывали, что иногда электроны ведут себя как точечные частицы. Картина пульсирующего в пространстве электрона выглядела привлекательно, но не было никаких опытных данных, подтверждающих, что заряд и энергия электрона на самом деле как-то распределялись в пространстве.
Чтобы примирить оба подхода, Борн предложил третий способ: представить волновую функцию как «призрак», который управляет поведением настоящего электрона. Волновая функция сама по себе не обладает никакими физическими характеристиками: ни энергией, ни импульсом. Она «живет» в абстрактном пространстве (которое теперь называется гильбертовым пространством), а не в реальном физическом мире. Это приводит к тому, что о ее существовании становится известно только косвенным образом, когда мы наблюдаем за электронами и получаем информацию о вероятности результатов отдельных измерений. Другими словами, как и в случае матрицы состояний Гейзенберга, волновая функция выступает источником данных о вероятностях.
Борн показал, как можно найти различные наблюдаемые величины с помощью волновой функции, используя ее призрачную, «закулисную» роль. Каждый раз, когда производятся измерения, вероятности различных исходов зависят от собственных состояний конкретного оператора (некоторых математических функций).
Например, для измерения наиболее вероятной координаты электрона необходимо найти собственные состояния оператора координаты и использовать их для вычисления вероятности каждой возможной координаты. А чтобы найти наиболее вероятное значение импульса, необходимо сделать то же самое с оператором импульса и его собственными состояниями. Точное измерение либо координаты, либо импульса означает, что волновая функция электрона совпала с одним из собственных состояний оператора координаты или оператора импульса. Удивительная особенность заключается в том, что, поскольку собственные состояния оператора координаты и оператора импульса образуют различные наборы, вы никогда не можете измерить координату и импульс частицы одновременно. Вам необходимо выбрать очередность измерений: либо сначала измерить координату, а потом импульс, либо наоборот. Как и в случае матричной механики, при изменении порядка выполнения операций изменяется результат.
В интерпретации Борна также можно использовать волновые функции, чтобы определить вероятность того, что электрон перейдет из одного квантового состояния в другое, например вероятность перехода между двумя энергетическими уровнями в атоме. Такой квантовый скачок происходит мгновенно и непредсказуемо, вы можете только оценить его вероятность. Единственный способ увидеть этот скачок — это наблюдение испускания или поглощения фотона атомом. Из-за принципа неопределенности вы не можете отследить движение электрона в пространстве при совершении им квантового скачка.