Вход/Регистрация
Бесчисленное поддается подсчету. Кантор. Бесконечность в математике
вернуться

Коллектив авторов

Шрифт:

1878 Кантор публикует Ein Beitrag zur Мапnigfaltigkeitslehre (4К учению о многообразиях»), где открыто излагает свои идеи о бесконечности. Леопольд Кронекер использует все свое влияние, чтобы воспрепятствовать изданию статьи.

1883 Выходит в свет работа Grundlagen einer allgemeinen Mannigfaltigkeitslehre (4 Основы общего учения о многообразиях»), апогей математического творчества Кантора.

1884 В мае у Кантора случается приступ депрессии. Он полностью оставляет занятия математикой более чем на пять лет.

1890 Создается Deutsche MathematikerVereinigung (4Немецкое математическое общество»), и Кантор становится его первым президентом.

1892 Кантор публикует работу Ober eine elemental Frage der Mannigfaltigkeitslehre («Об одном элементарном вопросе учения о многообразиях»), в которой представлен его знаменитый диагональный метод.

1895 Выходит в свет первая часть Beitrage zur Begmndung der transfi niten Mengenlehre («К обоснованию учения о трансфинитных множествах»), вторая часть будет опубликована в 1897 году.

1899 16 декабря умирает 13-летний сын Кантора. У ученого начинается душевное расстройство, от которого он так и не оправится до конца жизни.

1918 6 января Кантор умирает в психиатрической лечебнице в Галле.

ГЛАВА 1

Где начинается бесконечность

Есть вопросы, которыми человечество задается с тех самых пор, когда первые мужчины и женщины усаживались у огня и принимались размышлять и изучать то, что их окружало. Существовал ли мир всегда или у него было начало? Он перестанет существовать когда-нибудь? Есть ли предел у неба или оно не имеет преград?

В основе всех этих вопросов лежит одно из самых невероятных и глубоких понятий — бесконечность.

Почти все области математики являются результатом долгих исторических процессов, десятки или сотни лет они развивались благодаря множеству ученых, и трудно, если не невозможно, однозначно указать на одного зачинателя. Так, корни геометрии и алгебры уходят в Древний Египет и Месопотамию, а более «молодые» разделы науки, например методы счисления, выведены в конце XVII века одновременно и независимо друг от друга англичанином Исааком Ньютоном и немцем Готфридом Вильгельмом фон Лейбницем. Правда, они выразили идеи, которые их предшественники изучали веками (мы подробнее рассмотрим это в главе 3).

Однако математическая теория бесконечности (и теория множеств — как мы увидим, в сущности это одно и то же) появилась благодаря таланту и воображению единственного человека, создавшего ее фактически из ничего, — математика русско-немецкого происхождения Георга Кантора.

Можно даже назвать конкретную дату, когда произошел творческий прорыв, приведший Кантора к этой теории. Он писал 5 ноября 1882 года своему другу и коллеге Рихарду Дедекинду: 

«[...] после наших недавних встреч в Гарцбурге и Эйзенахе [немецких городах, где они виделись в сентябре 1882 года] по воле всемогущего Бога меня озарили самые удивительные, самые неожиданные идеи о теории ансамблей и теории чисел [он имеет в виду, как мы увидим в главе 4, бесконечные числа]. Скажу больше, я нашел то, что бродило во мне в течение долгих лет». 

Как же Кантор пришел к этим «удивительным открытиям»? Что послужило началом «брожения»? Чтобы понять это, мы шаг за шагом проследим путь его идей. Начнем, как и полагается, сначала.

ИЗ САНКТ-ПЕТЕРБУРГА В ГАЛЛЕ

Георг Фердинанд Людвиг Филипп Кантор родился 3 марта 1845 года в Санкт-Петербурге. Его отец, Георг Вальдемар Кантор, успешный торговец, датчанин по происхождению, был очень религиозен и ценил культуру и искусства. Мать, Мария Анна Бойм, дочь русских скрипачей, сама виртуозно играла на скрипке. Георг унаследовал ее музыкальный талант и годы спустя, то ли в шутку, то ли всерьез, сокрушался, что отец не позволил ему стать профессиональным скрипачом.

Музыка и искусство всегда были важны для Кантора. Он считал, что математика и искусство не так уж далеки друг друга и что математик должен обладать и творческой жилкой (это мнение разделяли многие его современники, а также автор этих строк). Так, в 1833 году он написал статью, в которой упоминал об «удивительных открытиях» (позже он рассказал о них в письме Дедекинду); среди прочего в ней были такие слова: «Вся общность математики заключается в ее свободе» (курсив Кантора). В ней же он писал: 

«В силу этого исключительного положения, отличающего ее от всех других наук и объясняющего сравнительную легкость и отсутствие принуждения в занятии ею, она заслуживает совершенно особенным образом имени свободной математики — название, которое, будь мне предоставлен выбор, я дал бы охотнее, чем ставшее обычным наименование «чистая» математика». 

Таким образом, математик может отпустить свое воображение в «свободный полет» и оперировать понятиями как ему вздумается — при условии, что они не ведут к логическим противоречиям. И если противоречий нет, то, как утверждал Кантор, можно быть уверенными, что эти объекты действительно существуют. Выходит, математик, способный выводить новые понятия, одновременно и ученый и художник. Эти идеи не просто отражали мысль Кантора, они, особенно в этой знаковой статье, играли стратегическую роль, о чем мы поговорим в следующих главах.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: