Шрифт:
Ответ на вопрос (б) – из восьми или девяти цифр. Почему? Наименьшее четырехзначное число – 1000, которое можно представить в виде 10^3 (единица с тремя нолями). Наименьшее пятизначное число – 10 000, равное 104. Следовательно, наименьшим произведением 10^3 и 104 будет 107 – единица с семью нолями, восьмизначное число. (Откуда взялось 107? Смотрите: 10^3 x 104 = (10 x 10 x 10) x (10 x 10 x 10 x 10) = 107.) Ну а наименьшим произведением будет число, лишь ненамного меньшее десятизначного 104 x 105 = 109, то есть девятизначное.
Такая логика приводит нас к простому правилу: умножение m– значного числа на n– значное даст число, в котором m + n или m + n – 1 знаков.
Конкретное количество цифр в ответе легче всего определить, взглянув на начальные (крайние левые) цифры перемножаемых чисел. Если их произведение больше или равно 10, тогда в ответе будет m + n цифр (например, в 271 x 828 произведение крайних левых цифр – 2 x 8 = 16 – больше десятки, поэтому ответом будет шестизначное число). Если произведение крайних левых цифр меньше или равно 4, тогда в ответе будет m + n – 1 цифр (например, 314 x 159 будет иметь пятизначный ответ). Ну а на случаи, в которых произведение крайних левых цифр будет равняться 5, 6, 7, 8 или 9, нам придется посмотреть чуть более внимательно. Например, произведение 222 и 444 – пятизначное, а вот 234 и 456 – шестизначное. Но куда важнее то, что оба ответа очень близки к 100 000.
В результате у нас получается еще более простое правило, уже в отношении деления: деление m– значного числа на n– значное даст число, в котором m – n или m – n + 1 знаков.
То есть девятизначное число, разделенное на пятизначное, даст нам четырех- или пятизначный результат. Правило определения более конкретного ответа здесь еще проще, чем в случае с умножением. Крайние левые цифры не нужно ни умножать, ни делить – достаточно их просто сравнить. Если крайняя левая цифра делимого меньше крайней левой цифры делителя, в частном будет меньшее количество цифр (m – n). Если же крайняя левая цифра делимого больше крайней левой цифры делителя, в частном будет больше (m – n + 1) цифр. Если же цифры обоих чисел одинаковые, смотрим на следующие после них цифры и применяем то же правило. Например, в результате деления 314 159 265 на 12 358 мы получим пятизначное число, а на 62 831 – четырехзначное. Деление 161 803 398 на 14 142 даст пятизначный ответ, потому что 16 больше 14.
Рассказывать в подробностях про процесс деления в уме я здесь не буду: он мало чем отличается от деления в столбик на бумаге (но каким бы методом вы ни воспользовались, считать нужно слева направо). Но есть парочка уловок, которые значительно облегчат вам жизнь.
Скажем, если вы делите на 5 (или на любое число, заканчивающееся на 5), удвойте числитель и знаменатель, и задача станет проще. Например,
После удвоения обоих чисел хорошо видно, что и 246, и 9 кратны 3 (мы поговорим об этом подробнее в главе 3), поэтому задача упрощается до деления отдельно числителя и знаменателя на 3.
Взгляните на взаимно обратные числа для чисел от 1 до 10:
Все дроби здесь либо конечны, либо цифры в них начинают повторяться со второго знака после запятой. Единственным исключением является десятичная дробь от 1/7, повторение в которой начинается с седьмой цифры:
(Причина этой закономерности в том, что все другие числа от 2 до 11 делятся на 10, 100, 1000, 9, 90 или 99, ближайший же делитель для 7 – 999 999.) Если же записать цифры десятичного аналога 1/7 в виде круга, произойдет чудо:
Что интересно, все другие дроби со знаменателем 1/7 тоже могут воссозданы с помощью бесконечного движения по этому кругу – меняться будет только точка начала этого движения. Посмотрите сами:
Давайте закончим эту главу тем же вопросом, который мы уже задавали несколько страниц назад. Чему будет равняться сумма всех чисел в таблице умножения? На первый взгляд звучит пугающе – так же, как и попытка найти сумму первых ста чисел. Но знакомство со всеми описанными выше замечательными закономерностями, которые так ловко заставляют числа танцевать, значительно повышают наши шансы легко и красиво найти правильный ответ.
Начнем с первого ряда – посчитаем сумму всех чисел в нем. Можно – как Гаусс, можно – с помощью формулы треугольных чисел, а можно – путем обычного сложения:
Так, теперь второй ряд. Вот как это будет выглядеть:
По той же логике, 3 ряд будет равен 3 x 55. И так далее, и тому подобное, и в результате сумму всех чисел в таблице умножения можно подсчитать так:
Ну а возвести в уме 55 в квадрат вы теперь можете легко и просто… 3025!
Глава номер два
Магия алгебры
Вступление с чудесами
Первый раз я столкнулся с алгеброй еще в детстве – мой отец вдруг решил дать мне урок вычислений:
– Сын, – сказал он мне. – Алгебра – все равно что арифметика. За тем исключением, что вместо чисел ты пишешь буквы. Вот, смотри: 2х + 3х = 5х, а 3у + 6у = 9у. Понимаешь?