Шрифт:
Прежде всего понятия длины и времени. Далее — понятие движения. Затем — понятие силы. И наконец, понятие массы.
Намечается программа, выполнение которой займет три главы.Кроме того, будет дано определение скорости и ускорения. А после этого мы проанализируем законы механики и попытаемся возможно более четко определить их физическое содержание. Такова программа.
Но прежде чем перейти к ее выполнению, необходимо сделать последнее замечание. Наша задача — не давать идеальные и общие определения, отнюдь нет! Мы просто стремимся понять физический смысл принципов Ньютона и по возможности ясно представлять себе, какое физическое содержание скрыто за теми символами и понятиями, которые мы используем.
Начнем с длины (расстояния).
Первая «неожиданность» — определение длины.Вопрос «Что такое длина?» Ньютон обходит молчанием. И напрасно. Этот вопрос продиктован не праздными выдумками хитроумного схоласта. Это вполне реальная физическая задача. Причем мы рассмотрим проблему чисто утилитарно. Мы хотим знать, как на практике определять расстояние между двумя точками или длину физического тела.
К счастью, вопрос об определении длины столь же касается геометров, как и физиков, и потому строгое математическое определение существует. (Математики не терпят никакой неопределенности.)
Определение. Длиной отрезка называется число, которое сопоставляется с каждым отрезком посредством процесса измерения.
Рецепт же для процесса измерения таков.
Чтобы измерить отрезок AB, нужно:
1) выбрать масштабный отрезок, обозначим его M (скажем, метр);
2) разбить этот отрезок на n равных между собой отрезков (допустим, 10 дециметров) — обозначим их M/n [6] ;
6
Равными называются отрезки, которые можно совместить между собой путем процессов движения. Свойства движения, в свою очередь, определяются аксиомами геометрии. Возможность деления любого отрезка на два, а следовательно, и на любое число вида 2п равных отрезков доказывается при помощи других аксиом геометрии.
3) откладывать отрезки AC1 = C1C2 = … = Cm–1Cm = M/n от точки А на отрезке AB, пока это возможно. Обозначим номер последнего m (например, 18);
4) увеличить неограниченно число n (разбивать масштабный метр на сантиметры, миллиметры и т. д.), находя каждый раз соответствующее число m (может быть, 183 см, 1834 мм…).
Это определение длины (или расстояния) остается и в специальной теории относительности.Предел, к которому стремится отношение m/n(18/10; 183/100; 1834/1000…), и называется длиной отрезка AB, измеренного с помощью масштабного отрезка M [7] .
Приведенное определение — типичный пример дедуктивной системы изложения — основного метода построения математики. Некоторым оно может показаться скучным и длинным, но другие, возможно, увидят в нем строгую и великолепную красоту математического мышления.
7
Для длины, определенной таким образом, можно доказать следующие важные теоремы:
Теорема 1. Длина всякого отрезка существует и определяется единственным образом для данного выбора масштабного отрезка.
Теорема 2. Длины равных отрезков равны.
Теорема 3. Если отрезок AC есть сумма отрезков AB и BC, то его длина равна сумме длин этих отрезков.
Теорема 4. Длина масштабного отрезка равна единице.
Попросту говоря, определение длины состоит в следующем.
Дайте нам масштабный отрезок, длина которого, по определению, равна единице. Откладывая его на измеряемом отрезке, мы увидим, сколько раз он уложился. Это число и есть длина измеряемого отрезка. Чтобы точно найти, сколько раз уложился масштабный отрезок на измеряемом, надо уметь откладывать и дробные доли масштаба, а значит, уметь делить масштабный отрезок на сколь угодно малые равные части. Вот и все.
Довольно существенное добавление. Математическое определение переводится на обыденный житейский язык.Так решают вопрос математики. Но для физика и этого строгого определения недостаточно. И вот почему.
Дайте нам масштабный отрезок, говорите вы, мы его отложим вдоль измеряемого отрезка и скажем, чему равна длина. Ну, а если из-за физических условий задачи нельзя приложить масштаб? Скажем, требуется, не выезжая из Москвы, определить расстояние от Шаболовской башни до водокачки в Люберцах. Или, находясь у полотна железной дороги, не сходя с места, измерить длину проезжающего поезда. Ведь к нему масштаба не приложить. Он попросту уедет.
Далее, в процессе определения длины незримо присутствует понятие «движение». Если обратиться к геометрии, то мы будем приятно поражены, узнав, что математики считают движение понятием первичным и никак его не определяют. Физиков же это не очень устраивает.
И наконец, последнее. Математикам хорошо. Они оперируют с идеальными геометрическими отрезками. Их масштабный отрезок M не расширится при нагревании, не сократится под давлением — он обладает только геометрическими, а не физическими свойствами.