Вход/Регистрация
Программируем Arduino. Основы работы со скетчами
вернуться

Монк Саймон

Шрифт:

Так же как I2C, интерфейс 1-Wire использует понятия ведущего и ведомого устройств. Микроконтроллер играет роль ведущего, а периферийные устройства — ведомых. Каждое ведомое устройство еще на заводе получает уникальный идентификационный номер, который часто называют адресом, чтобы его можно было идентифицировать на шине, к которой подключено множество ведомых. Адрес имеет размер 64 бита, что позволяет иметь примерно 1,8 x 1019 разных идентификационных номеров.

Подобно I2C, протокол 1-Wire предусматривает переключение режима работы шины ведущим устройством на ввод и вывод, чтобы иметь возможность двусторонних взаимодействий. Однако в шине 1-Wire отсутствует отдельная линия передачи тактовых сигналов, поэтому нули и единицы передаются длинными и короткими импульсами. Импульс длительностью 60 мкс обозначает 0, а длительностью 15 мкс — 1.

Обычно линия данных находится под напряжением с уровнем HIGH, но, когда микроконтроллеру (ведущему) требуется послать команду устройству, он генерирует специальный импульс сброса с уровнем LOW длительностью не менее 480 мкс. Вслед за ним следует последовательность импульсов 1 и 0.

Библиотека OneWire

Работу с интерфейсом 1-Wire здорово упрощает библиотека OneWire, которая доступна по адресу http://playground.arduino.cc/Learning/OneWire.

Инициализация 1-Wire

Чтобы инициализировать Arduino как ведущее устройство на шине 1-Wire, сначала нужно подключить библиотеку OneWire:

#include <OneWire.h>

Затем создать экземпляр OneWire и указать, какой контакт Arduino будет использоваться как линия данных на шине 1-Wire. Эти два действия можно объединить в одну команду, а в роли линии данных использовать любой контакт на плате Arduino — достаточно просто передать номер контакта в виде параметра:

OneWire bus(10);

В данном случае роль линии данных шины будет играть контакт D10.

Сканирование шины

Поскольку каждое ведомое устройство, подключенное к шине, имеет уникальный идентификационный номер, присвоенный на заводе, нужен какой-то способ определить адреса устройств, подключенных к шине. Было бы неблагоразумно «зашивать» адреса устройств в скетч, потому что в случае замены новое ведомое устройство будет иметь уже другой адрес и скетч не сможет обращаться к нему. Поэтому ведущее устройство (Arduino) должно создать своеобразную опись устройств на шине. Здесь следует отметить, что первые 8 бит в адресе определяют «семейство», которому принадлежит устройство, то есть по ним можно определить, является ли устройство, например, датчиком DS18B20 или относится к какому-то другому типу.

В табл. 8.1 перечислены некоторые из наиболее известных кодов семейств для шины 1-Wire. Полный список можно найти на странице http://owfs.sourceforge.net/family.html.

Таблица 8.1. Коды семейств устройств для шины 1-Wire

Код семейства (шестнадцатеричный)

Семейство

Описание

06

iButton 1993

Идентификационный ключ

10

DS18S20

Высокоточный температурный датчик с разрешающей способностью 9 бит

28

DS18B20

Высокоточный температурный датчик с разрешающей способностью 12 бит

1C

DS28E04-100

ЭСППЗУ емкостью 4 Кбайт

В библиотеке OneWire имеется функция search, которую можно использовать для поиска всех ведомых устройств на шине. Следующий пример выводит адреса всех устройств на шине в монитор последовательного порта:

// sketch_08_01_OneWire_List

#include <OneWire.h>

OneWire bus(10);

void setup

{

Serial.begin(9600);

byte address[8]; // 64 бита

while (bus.search(address))

{

for(int i = 0; i < 7; i++)

{

Serial.print(address[i], HEX);

Serial.print(" ");

}

// проверить контрольную сумму

if (OneWire::crc8(address, 7) == address[7])

{

Serial.println(" CRC OK");

}

else

{

Serial.println(" CRC FAIL");

}

}

}

void loop

{

}

На рис. 8.2 показан результат выполнения этого скетча при наличии двух температурных датчиков DS18B20, подключенных к Arduino. Обратите внимание на то, что оба устройства имеют один и тот же код семейства в первом байте, равный 28 (в шестнадцатеричном формате).

Рис. 8.2. Список ведомых устройств 1-Wire

Для работы функции search требуется массив размером 8 байт, куда она могла бы поместить следующий найденный адрес. После последнего обнаруженного устройства она возвращает 0. Это позволяет выполнять итерации в цикле while, как в предыдущем примере, пока не будут определены все адреса. Последний байт адреса в действительности является циклической контрольной суммой (Cyclic Redundancy Check, CRC), позволяющей проверить целостность адреса. Библиотека OneWire включает специальную функцию для проверки контрольной суммы CRC.

  • Читать дальше
  • 1
  • ...
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: