Вход/Регистрация
Радиоэлектроника-с компьютером и паяльником
вернуться

Кардашев Генрих Арутюнович

Шрифт:

В отличие от виртуальной электроники, в реальной обращение с МОП- и МДП-транзисторами требует большой осторожности. Дело в том, что большая рабочая чувствительность транзисторов связана с использованием тончайших пленок окислов или диэлектрика. Подобные пленки могут быть разрушены даже такими небольшими статическими зарядами, которые возникают на теле человека. Это приносило массу неприятностей при работе с полевыми транзисторами. Для того чтобы избежать повреждения, МОП-транзисторы обычно поставляются с соединенными вместе выводами с использованием специальной упаковки. Особые меры предосторожности принимаются при их монтаже (заземление рабочего инструмента и руки с помощью металлического браслета на запястье и т. п.). К счастью, новейшие МОП-транзисторы теперь частично защищены с помощью стабилитронов, включенных внутри транзистора между затвором и истоком.

Тем не менее, положительные свойства полевых транзисторов таковы, что именно широкое использование МОП-транзисторов в интегральных микросхемах в свое время революционизировало всю цифровую электронику.

Оптоэлектронные компоненты

В различных электронных устройствах широко используются физические сигналы в виде света в видимом, инфракрасном и ультрафиолетовом участках спектра. В связи с этим существует два вида первичных оптоэлектронных устройств: приемники и излучатели света. В первых происходит преобразование энергии света в электрическую энергию или световой сигнал преобразуется в электрический сигнал (здесь, конечно, тоже происходит преобразование энергии, но важны временные параметры). Во вторых происходит обратное преобразование энергии. Наконец, существуют компоненты, в которых происходит двойное преобразование сигнала (энергии) по схеме: «электричество->свет->электричество».

Многие из рассмотренных выше полупроводниковых устройств в той или иной степени обладают свойствами подобных преобразователей, и их развитие привело к созданию в виде отдельных компонентов с определенными характеристиками.

Работа оптоэлектронных приборов основана на открытиях физиков: Беккереля, Герца, Столетова, Эйнштейна, Басова, Прохорова, Таунса и др.

Фоторезисторы

Фоторезистор включают в цепь последовательно с источником напряжения и резистором нагрузки. За счет внутреннего фотоэффекта под действием света он уменьшает свое сопротивление: фотоны переводят электроны в зону проводимости, в результате чего возрастает концентрация носителей электричества (электронов и дырок) и сопротивление уменьшается. В качестве светочувствительного материала в фоторезисторах используют сульфид или селенид кадмия, которые наносят на изолирующую подложку.

В отсутствие светового потока в фоторезисторах протекает небольшой темновой ток, обуславливающий их темновое сопротивление от 1 до 100 МОм. С ростом светового потока их сопротивление может уменьшиться в 1000 раз.

Фоторезисторы являются сравнительно инерционными приборами: их постоянная времени составляет 10…100 мс.

Основными параметрами фоторезисторов являются: темновое сопротивление и кратность его изменения, рабочее напряжение и ток.

Фотогальванические (солнечные) элементы

Фотогальванический элемент представляет собой источник тока, выполненный на основе р-n перехода в полупроводниковых материалах (кремний). Принцип их действия также основан на внутреннем фотоэффекте, но наличие р-n перехода приводит к разделению зарядов на электродах и, следовательно, к возникновению фото-ЭДС. Для одного элемента величина ЭДС невелика и при токе 50 мА составляет 0,45 В. Для увеличения тока элементы выполняют с большой плоской поверхностью, а для увеличения напряжения соединяют последовательно в батарею. КПД преобразования энергии света в электрическую энергию у них также не высок (15 %), но зато они являются экологически чистыми возобновляемыми источниками электроэнергии.

Фотодиоды

Устройство фотодиода подобно устройству фотогальванического элемента, а использование аналогично фоторезистору или гальваническому элементу.

Существует два типа фотодиодов с обычным р-n переходом и так называемым p-i-n переходом. В p-i-n фотодиоде, как и в упомянутом выше пин-диоде, между р и n областями, имеется прослойка из нелегированного полупроводника. Это приводит к улучшению ряда их характеристик, например быстродействия. В корпусе фотодиода имеется стеклянное окошко, позволяющее свету попадать на р-n переход (рис. 15, а, б).

Рис. 15. Оптоэлектронные компоненты (внешний вид, УГО и компоненты EWB):

а, б — фото- и светодиоды; в, г — цифровые индикаторы

Основными параметрами фотодиодов являются: темновой ток, рабочее напряжение и чувствительность по отношению к световому потоку.

Фотодиод может работать в двух режимах как фоторезистор и в генераторном режиме, когда внешний источник отсутствует и с его зажимов снимается фото-ЭДС.

Фототранзисторы

Фототранзисторы устроены аналогично обычным транзисторам, но, как и в фотодиоде, в их корпусе имеется светопрозрачное окошко, через которое свет попадает на базу прибора. Благодаря этому в базе генерируются дополнительные носители заряда, что эквивалентно подаваемому на нее сигналу управления.

Фототранзистор может и не иметь электрического вывода от базы (диодное включение). По сравнению с фотодиодами фототранзисторы имеют большие выходные токи из-за своих усилительных свойств, хотя их инерция немного больше.

  • Читать дальше
  • 1
  • ...
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: