Шрифт:
Мюон казался поразительно похожим на электрон, но более массивным и менее стабильным. Услышав об этом открытии, американский физик Исидор Раби язвительно заметил: «Такого никто не заказывал». Существование в природе более тяжелой и неустойчивой копии электрона казалось странным и ненужным. Раби и не подозревал, как много других частиц еще оставалось в этом меню.
Осознав, что взаимодействие космических лучей с верхними слоями атмосферы порождает новые формы материи, физики решили не ждать, пока частицы долетят до камер, установленных в лабораториях, так как к этому моменту они могут распасться на уже известные виды материи. Поэтому камеры Вильсона стали устанавливать на большей высоте, надеясь поймать в них другие частицы.
Исследователи из Калтеха выбрали вершину горы Вилсон, расположенной вблизи города Пасадены, в котором они работали. И действительно, они обнаружили новые следы, указывающие на существование новых частиц. Другие группы, пытаясь зарегистрировать другие взаимодействия, устанавливали фотопластинки в обсерваториях в Пиренеях и в Андах. Ученые, работающие в Бристоле и Манчестере, тоже обнаружили на своих фотопластинках следы новых частиц. Как оказалось, Раби следовало беспокоиться не о мюонах. На свет явился целый зверинец частиц.
Масса некоторых из них была равна одной восьмой массы протона или нейтрона. Такие частицы, названные пионами, встречались двух видов – с положительным и отрицательным зарядом. Электрически нейтральная разновидность, зарегистрировать которую было труднее, была открыта позже. В Манчестере были получены два снимка из камеры Вильсона, на которых некая нейтральная частица, по-видимому, распадалась на пионы. Масса этой новой частицы была приблизительно равна половине массы протона. В камере, установленной на вершине горы Вилсон, были получены другие свидетельства, подтверждающие открытие таких частиц, названных каонами, которых было найдено четыре вида.
Со временем открывали все новые и новые частицы, так что общая картина стала совершенно неподъемной. В 1955 г. нобелевский лауреат Уиллис Лэмб съязвил в своей благодарственной речи: «Если раньше за открытие новой частицы давали Нобелевскую премию, то теперь за это следовало бы штрафовать на десять тысяч долларов». Когда ученые выяснили, как химические элементы образуются из электронов, протонов и нейтронов, они надеялись упростить периодическую систему. Однако оказалось, что эти три частицы были лишь вершиной айсберга. Теперь обнаружилось более сотни разных частиц, которые, по-видимому, образовывали те кирпичики, из которых состоит материя. Энрико Ферми сказал тогда одному студенту: «Молодой человек, если бы я знал названия всех этих частиц, я был бы ботаником».
Начались поиски объединяющего принципа, который объяснил бы существование мюонов, пионов, каонов и других частиц, – так же как Менделееву удалось найти порядок классификации элементов и логику их расположения в периодической системе.
Основополагающая структура, которая наконец позволила понять логику этого зверинца частиц – так сказать, нарисовать план, позволяющий не заблудиться в зоопарке, – оказалась в итоге математическим объектом.
План зоопарка частиц
Когда пытаешься что-то классифицировать, полезно выделить некую основную характеристику, позволяющую разделить множество неупорядоченных объектов на меньшие группы. Так, идея биологического вида помогла установить некий порядок в животном царстве. В случае физики элементарных частиц одной из важных неизменяемых характеристик, которые позволили разбить весь этот зоопарк на меньшие группы, был электрический заряд. Как та или иная частица взаимодействует с электромагнитным полем? Электроны отклоняются в нем в одну сторону, протоны – в другую, а нейтроны вообще его не замечают.
По мере обнаружения новых частиц их можно было сортировать при помощи электромагнитного поля. Некоторые из них отправлялись в клетку к электрону, другие – к протону, а остальные следовало поместить вместе с нейтроном. Так был сделан первый шаг к упорядочению зверинца частиц.
Но электромагнитное взаимодействие – это лишь одна из четырех известных нам сил, связывающих Вселенную воедино. Три остальные силы – это гравитация, сильное ядерное взаимодействие, которое связывает протоны и нейтроны, удерживая их вместе внутри атомного ядра, и, наконец, слабое ядерное взаимодействие, управляющее такими процессами, как радиоактивный распад.
Задача состояла в выделении других характеристик, которые подобно электрическому заряду могли бы выявить разное поведение этих частиц с точки зрения других фундаментальных взаимодействий. Например, хорошим критерием для установления некоторой иерархии в зоопарке частиц была их масса. По этому признаку можно сгруппировать вместе пионы и каоны, масса которых на порядок меньше, чем у протонов и нейтронов, из которых состоит обычная материя. В другую группу входили вновь открытые сигма-, кси- и лямбда-гипероны, более тяжелые, чем протоны и нейтроны, и часто распадающиеся на протоны и нейтроны.