Шрифт:
Японские счеты, или соробан, похожи на китайские, но в небе находится только одна костяшка, а на земле — четыре, чего достаточно для осуществления арифметических операций. Русские счеты состоят из рамы со спицами, на которые нанизано по десять костяшек без всякого разделения.
В течение нескольких веков счеты были главным устройством для вычислений; существовала даже профессия абакиста, осуществлявшего расчеты с помощью этого инструмента. Когда в Европе начали вводить арабские цифры, позволяющие перейти к позиционной системе счисления, абакисты встретили нововведения крайне враждебно, призывая оставить классический способ вычисления. Известна иллюстрация, сделанная Грегором Рейшем для работы Margarita philosophica {«Жемчужина философии»), на которой встречаются абакист, в данном случае Пифагор, и Боэций — алгорист, использующий новые арабские цифры. Несмотря на свои явные преимущества, позиционная система счисления полностью прижилась в Европе только в XVI веке.
ДЖОН НЕПЕР
Джон Непер (1550-1617), барон Мерчистон, теолог и математик. Главной в своей жизни он считал религию, а математикой занимался ради развлечения, но вошел в историю науки как создатель логарифмов — инструмента, над которым работал более 20 лет и который продемонстрировал в 1614 году в своей работе «Описание удивительной таблицы логарифмов».
Открытые им логарифмы не имели никакого определенного основания, но английский математик Генри Бригс убедил его ввести основание 10. Поскольку Непер был уже болен, Бригс сам вычислил десятичные логарифмы первых тысячи чисел. Основываясь на той же самой идее нахождения инструмента для облегчения арифметических операций, он помог Джону Неперу в 1617 году, то есть в год смерти ученого, опубликовать работу «Рабдология, или две книги о счете с помощью палочек», в которой были представлены таблицы Непера.
НЕПЕР: ТАБЛИЦЫ И ЛОГАРИФМЫ
До XVII века не было изобретено ничего нового, способного упростить вычисления. В 1617 году шотландский математик Джон Непер опубликовал свой труд, который стал известен как «Рабдология». В нем ученый представил ряд таблиц, позволявших превратить произведение в сумму, а деление — в вычитание. Эти таблицы получили название палочек Непера. Изобретение состояло из ряда вертикальных столбцов: в каждом из них имелось девять квадратов, разделенных на две части диагональной чертой, кроме самого верхнего. В верхнем квадрате стояло число, которое нужно было умножить, а нижние квадраты содержали результат умножения этого числа на два, три, четыре и так далее до девяти.
С помощью данного изобретения можно было умножать большие числа. Следовало взять соответствующие колонки, чтобы цифры в верхних квадратах образовали искомое число. После этого нужно просто сложить между собой значения из соответствующей строки с учетом их разрядности. Так, для умножения числа 625 на 7 в соответствующем ряду умножения получались значения 4 для тысяч, 3 = 2 + 1 для сотен, 7 = 4 + 3 для десятков и 5 для единиц. То есть 625 х 7 = 4375. Мы можем убедиться в этом, взглянув на рисунок 7. Если нужно умножить большие числа, достаточно выбрать каждый ряд цифр второго множителя и последовательно сложить числа, полученные предыдущим способом. Чтобы умножить 2134 на 732, необходимо распределить таблицы так, как показано на рисунке 8. Суммируются значения, соответствующие каждому множителю. Следует учитывать, что когда мы складываем по диагонали, а сумма больше девяти, как в случае с десятками произведения 2134x3, мы помещаем на их место единицы, а десятки этого результата прибавляются к следующей цифре.
РИС. 7
Произведение сводится к тому, чтобы провести серию сложений, поскольку произведения для каждой цифры уже имеются в таблице. Чтобы провести деление, требуется обратный процесс, вычитание. Если мы хотим разделить 4312 на 625, нужно взять таблички, соответствующие делителю (625), и выполнить все операции умножения в каждой линии с целью найти наиболее близкое к делимому (4312) число, меньшее его. Таким образом мы получаем частное (6), как видно из рисунка 9. Наконец, чтобы найти остаток от деления, мы должны вычесть из 4312 значение 3750, что дает нам в результате 562.
РИС. 8
РИС. 9
Также с помощью таблиц можно совершать возведение в степень, извлечение квадратного и кубического корня.
Непер вошел бы в историю математики, даже если бы не создал этих способов быстрого вычисления. В своей книге, опубликованной ранее, в 1614 году, он представил свое самое важное изобретение: логарифмы. Речь идет о методе, который позволяет превращать произведение в сложение, деление — в вычитание и возведение в степень — в умножение. Упрощение подобных операций было очень полезно, особенно в астрономических вычислениях. Великий французский математик Пьер-Симон де Лаплас (1749-1827) сказал по этому поводу: «Похоже, что сокращением работы по вычислению с нескольких месяцев до нескольких дней изобретение логарифмов удвоило жизнь астрономам».
Логарифм числа b по основанию а определяется как показатель степени, в которую нужно возвести число а, чтобы получить число Ь. В символьном выражении это означает:
logab = х <-> ах = b.
Например, логарифм 81 по основанию 3 равен 4 (log381 = 4), поскольку З4 = 81.
Нахождением логарифма называется операция, обратная возведению в степень, точно так же, как вычитанием является действие, обратное сложению. Если у нас есть значение суммы и мы знаем одно из слагаемых, поиск другого слагаемого означает вычитание из суммы значения известного слагаемого; следовательно, это обратные операции. Точно так же, если мы знаем значение степени и ее показатель, найти основание равносильно извлечению корня, то есть нахождению корня той же степени из значения данной степени. А если мы знаем основание, нахождение показателя степени превращается в нахождение логарифма по этому основанию значения этой степени. Поскольку сумма двух чисел обладает свойством коммутативности, то есть порядок слагаемых не меняет сумму, у этой операции есть только одна противоположная. Поскольку возведение в степень некоммутативно, существуют две обратные операции, в зависимости от того, известно ли основание или показатель степени.
Наряду с логарифмами по основанию 10, которые обычно просто сокращаются как log или lg, без указания основания, также широко используются логарифмы по основанию е, трансцендентного числа из той же серии, что и знаменитое число я. Эти логарифмы получили название натуральных логарифмов и обычно обозначаются In или loge.
Укажем основные свойства, на которых основывается вычисление с помощью логарифмов и которые верны для любого основания.
— Логарифм произведения двух чисел равен сумме логарифмов этих двух множителей: log (а • b) = loga + logb.