Шрифт:
Диапазон напряжений высокого и низкого уровней. Как упоминалось в разд. 1.10, значения напряжений, соответствующих ВЫСОКИМ и НИЗКИМ уровням, могут колебаться в некотором диапазоне. Например, для высокоскоростной КМОП («НС») логики входные напряжения от уровня земли до 1,5 В представляются как НИЗКИЙ уровень, а напряжения в пределах 1,5 В от напряжения питания +5 В — как ВЫСОКИЙ уровень. Типичные напряжения НИЗКОГО и ВЫСОКОГО состояний составляют десятую долю В выше 0 и ниже 5 В соответственно (остаточное напряжение одного МОП-транзистора).
Такие широкие диапазоны выбраны для того, чтобы изготовитель микросхем имел в своем распоряжении определенный допуск, в пределах которого параметры схемы могли бы колебаться за счет изменения температуры, нагрузки, напряжения питания, а также под воздействием шумов, т. е. разнообразных паразитных сигналов, которые добавляются к рабочему сигналу при его прохождении через схему (за счет емкостных связей, внешних наводок и т. п.). Схема, получив сигнал, определяет, каков его уровень (ВЫСОКИЙ или НИЗКИЙ), и действует соответствующим образом. Если помеха не превращает 1 в 0 или наоборот, то все прекрасно и любые помехи отсеиваются на каждой ступени, поскольку на выходе схемы восстанавливаются «чистые» значения 1 или 0. Цифровая электроника в этом смысле не подвержена влиянию помех и является идеальной.
Термин помехоустойчивость используется здесь для обозначения максимального уровня помехи, которая, будучи добавлена к логическому сигналу при самых неблагоприятных условиях, не будет еще приводить к ошибочной работе схемы. Например, для элементов ТТЛ помехоустойчивость составляет 0,4 В, так как любой сигнал ниже 0,8 В интерпретируется ими как НИЗКИЙ уровень, а любой сигнал выше 2,0 В — как ВЫСОКИЙ, в то время как уровни выходных сигналов составляют в самом неблагоприятном случае +0,4 и +2,4 В соответственно (см. таблицу логических уровней в гл. 1). В действительности помехоустойчивость этих схем значительно выше приведенной величины, поскольку типичные значения ВЫСОКОГО и НИЗКОГО напряжений составляют +0,2 и 3,4 В, а входной порог принятия решения равен ~ 1,3 В. Однако необходимо помнить, что хорошая схема рассчитана на самый неблагоприятный случай. Не следует также забывать о том, что различные семейства логических элементов обладают различной помехоустойчивостью. Элементы КМОП имеют по сравнению с ТТЛ более высокую помехоустойчивость, а быстродействующие элементы ЭСЛ — более низкую. Конечно, восприимчивость к шуму цифровых систем зависит также от амплитуды шума, которая в свою очередь зависит от таких факторов, как параметры выходной ступени индуктивности проводников земли, существования длинных линий «шин», скорости нарастания на выходе во время логического перехода (когда из-за емкостной нагрузки возникают переходные токи, вызывающие выбросы напряжения линии земли). Мы будем касаться некоторых из этих проблем в разд. 9.11– 9.13.
Логические уровни
Диаграмма на рис. 8.1, а показывает диапазоны напряжений, которые соответствуют двум логическим состояниям (ВЫСОКИЙ и НИЗКИЙ) для самых популярных семейств цифровой логики. Для каждого логического семейства необходимо определить допустимые значения как входных, так и выходных напряжений, соответствующих состояниям ВЫСОКИЙ и НИЗКИЙ. Закрашенная площадь выше линии показывает допустимый диапазон выходных напряжений, при котором гарантируются логические состояния НИЗКИЙ и ВЫСОКИЙ без ошибок, с двумя стрелками, указывающими типовые выходные значения (НИЗКИЙ и ВЫСОКИЙ), встречающиеся на практике. Закрашенная площадь ниже линии показывает диапазон входных напряжений, гарантирующий представление как НИЗКИЙ или ВЫСОКИЙ, со стрелкой, указывающей типовое напряжение логического переключения, т. е. линию, разделяющую уровни НИЗКИЙ и ВЫСОКИЙ. Во всех случаях логическое состояние ВЫСОКИЙ более положительно, чем логическое НИЗКИЙ.
Значения «минимальный», «типовой» и «максимальный» в электронных спецификациях требуют нескольких слов для пояснения. Наиболее просто, изготовитель гарантирует, что компоненты будут попадать в диапазон минимум-максимум с наибольшей вероятностью к «типовому». Это означает для типовых спецификаций, которые вы используете при проектировании схем, что эти схемы должны работать надежно внутри диапазона, задаваемого минимумом и максимумом. В частности, хорошо спроектированная схема должна функционировать при всех возможных комбинациях минимальных и максимальных значений (даже на самый плохой случай).
Рис. 8.1, а
8.03. Числовые коды
В большинстве случаев рассмотренные выше условия, которые могут быть представлены цифровыми уровнями, просты и наглядны. Более сложный и интересный вопрос заключается в том, как с помощью цифровых уровней представить часть числа.
Десятичное (с основанием 10) число представляет собой строчку из цифр и (при этом) подразумевается, что они должны быть умножены на последовательные степени числа 10 для образования индивидуальных произведений, а затем вместе сложены. Например, 137,06 = 1·102 + 3·101 + 7·100 + 0·10– 1 + 6·10– 2. Для записи числа требуется десять символов (от 0 до 9), а степень числа 10, на которую должна быть умножена цифра, определяется ее положением по отношению к десятичной запятой. Если мы хотим представить число с помощью только двух символов (0 и 1), то такая система счисления будет называться двоичной или системой с основанием 2. В этом случае каждая 1 или 0 будет умножаться на последовательные степени числа 2. Например,
11012 = 1·23 + 1·22 + 0·21 + 1·20 = 1310.
Отдельные «единицы» и «нули» в записи, представляющей двоичное число, называются «битами» (от слов binary digits — двоичный разряд). Индекс (записываемый всегда по основанию 10) указывает, какая используется система счисления. Он часто бывает нужным для того, чтобы избежать путаницы, так как все символы выглядят одинаково. Только что описанным методом мы преобразовали число из двоичной формы в десятичную. Для того чтобы произвести обратное преобразование, десятичное число нужно последовательно делить на 2, каждый раз записывая остаток. Для преобразования числа 1310 в двоичное нужно произвести следующие операции: 13/2 = 6, остаток 1; 6/2 = 3, остаток 0; 3/2 = 1, остаток 1; 1/2 = 0, остаток 1; это дает 1310 = 11012. Заметим, что ответ образуется, начиная с младшего значащего разряда (МЗР).
Шестнадцатеричное представление чисел. Для описания систем только с двумя состояниями естественно применять двоичные числа. Однако, как будет показано ниже, это не единственный способ.
Поскольку двоичные числа имеют большую длину, для их записи используется шестнадцатеричное (с основанием 16) представление. Для записи двоичного числа в шестнадцатеричном коде его разбивают на группы по 4 бит, каждая из которых может принимать значения от 0 до 15. Поскольку для обозначения каждой шестнадцатеричной позиции мы хотим использовать один символ, величины 10–15 будем обозначать буквами латинского алфавита от А до F: