Шрифт:
Как показывает бюджет погрешности, в этой схеме наибольшую погрешность дает утечка конденсатора хранения С1. Конденсаторы, предназначенные для работы с малыми утечками, специфицируются по утечке — иногда в виде сопротивления утечки, иногда в виде постоянной времени (мегаом x микрофарада). В данной схеме С1 должен иметь значение не меньше по крайней мере нескольких микрофарад, чтобы была мала скорость заряда от токов погрешности других элементов (см. бюджет). В этом диапазоне емкостей наименьшей утечкой обладают полистиреновые, поликарбонатные и полисульфоновые конденсаторы.
Выбранный нами конденсатор имеет утечку по спецификации не более 1000 000 мегаом x микрофарад, т. е. параллельное сопротивление утечки составляет не менее 100000 МОм. Но даже при этом ток утечки при полном вых. напряжении (10 В) будет 100 пА; это соответствует скорости падения напряжения на выходе около 1 мВ/мин — составляющая погрешности, намного превышающая все остальные. Поэтому мы и добавили описанную выше схему компенсации тока утечки. Мы имеем право предположить, что действительная утечка может быть таким образом уменьшена до 0,1 от значения, указанного в паспорте конденсатора (на самом деле можно добиться намного большего улучшения). Большой стабильности от схемы компенсации утечки не требуется, поэтому наши требования здесь скромны. Как мы увидим при обсуждении влияния сдвигов напряжения, значение R15 намеренно выбирается большим, чтобы сдвиг напряжения U3 не создавал заметных погрешностей по току.
Говоря об ошибках, порождаемых внешними по отношению к самим усилителям элементами, следует отметить, что утечка у ПТ-ключа обычно лежит в диапазоне 1 нА — значение для данной схемы совершенно неприемлемое. Изящный и действенный метод борьбы с этим состоит в применении двух последовательно соединенных ПТ, где утечка Т2 создает на Т1 напряжение лишь в 1 мВ, а утечкой в суммирующей точке U3 можно пренебречь. Этот метод иногда используется в схемах интеграторов, (см. разд. 4.19). Мы также использовали его в усовершенствованной схеме пикового детектора в разд. 4.15. Как будет показано ниже, U3 выбирается таким, чтобы ток погрешности через конденсатор С1 оставался в пикоамперном диапазоне. Здесь всюду одинаковая философия: выбирайте конфигурацию схемы и типы элементов так, чтобы вписаться в бюджет погрешности. Иногда это очень трудная работа, требующая хитрых приемов, а в других случаях легко все решается стандартными способами.
Одним из таких источников погрешности в любой схеме с ПТ-ключами является перенос заряда с управляющего затвора в несущий сигнал канал: переходные процессы с затвора через емкостную связь передаются на сток и исток. Как мы отмечаем в гл. 3, суммарный переданный заряд не зависит от времени переходного процесса, а определяется лишь размахом напряжения на затворе и емкостью перехода затвор-канал: Q = C3KU3. В данной схеме перенос заряда приводит к погрешности напряжения автоподстройки нуля, поскольку заряд преобразуется в напряжение на запоминающем конденсаторе С1. Эту погрешность легко оценить.
В паспорте на ПТ 3N156 заданы максимальные значения емкостей Сзс(затвор-сток) и Сзи (затвор-канал, в основном по отношению к истоку), соответственно равные 1,3 и 5 пФ. При этом перепад напряжения на затворе в 15 В вызовет перенос заряда, равный 75 пКл, что соответствует скачку напряжения Uс = Q/C1 = 7,5 мкВ на конденсаторе С1,имеющем емкость 10 мкФ. Это в пределах нашего бюджета погрешностей; фактически мы скорее всего даже переоценили данный эффект, так как включили в расчет не только емкость стока, но и емкость истока, в то время как на каком-то этапе переключения затвора канал разрывается, отсекая исток от стока.
7.06. Входные погрешности усилителя
Отклонения входных характеристик ОУ от идеальных, обсуждавшиеся в гл. 4 (конечность значений входного сопротивления и входного тока, сдвиг напряжения, подавление синфазного сигнала и отклонений питания, дрейф этих величин с температурой и временем), создают, как правило, серьезные трудности при проектировании прецизионных схем и заставляют делать дополнительную работу при составлении конфигурации схемы, подборе элементов и выборе конкретного ОУ. Лучше всего это пояснить на примерах, что мы вскоре и сделаем. Заметим еще, что эти погрешности или им аналогичные существуют и у схем усилителей на дискретных компонентах.
Входное сопротивление. Давайте обсудим бегло только что перечисленные источники погрешностей. Входное сопротивление образует делитель напряжения с сопротивлением источника, от которого сигнал поступает на усилитель, поэтому коэффициент усиления по отношению к расчетному снижается. Чаще всего это не проблема, так как входное сопротивление значительно увеличивается за счет обратной связи. Например, операционный усилитель ОР-77Е с входным каскадом на биполярных, а не на полевых транзисторах имеет типовое значение «полного дифференциального входного сопротивления» 45 МОм. В схеме с достаточным петлевым усилением обратная связь поднимает входное сопротивление до значения «полного синфазного входного сопротивления» 200 000 МОм. Даже если этого мало, то можно воспользоваться ОУ с входным ПТ-каскадом, у которого Rвх достигает астрономических величин.
Входной ток смещения. Это более серьезная вещь. Здесь речь пойдет о наноамперных токах, что может вызвать микровольтные ошибки даже при малых полных сопротивлениях источника порядка 1 кОм. Снова на выручку приходят ПТ, но приходится мириться с большим возрастанием сдвига по напряжению как платой за улучшение ситуации с током. Биполярные ОУ со сверхвысоким , такие как LT1012, 312 и LM11, также могут иметь исключительно малый входной ток. Для примера сравним прецизионный биполярный операционный усилитель ОР-77 с LT1012 (биполярный, оптимизированный для получения малого тока смещения), ОРА111 (на ПТ, прецизионный, с малым смещением), AD549 (ПТ со сверхмалым смещением) и ICH8500 (ОУ на МОП-транзисторах с исключительно малым смещением); это наилучшие типы на момент написания данной книги, и мы выбрали самые лучшие модификации каждого типа: