Шрифт:
Рис. 9.28. Помехи на шине земли.
Предположим, что ИС1 меняет свое состояние; в этом случае от шины +5 В к земле протекает большой кратковременный ток по указанным путям (для схем 74Fхх или 14АС(Т)хх ток может достигать 100 мА). Этот ток в комбинации с индуктивностью проводников земли и U+ приводит к появлению, как показано на рисунке, коротких выбросов напряжения относительно опорной точки. Несмотря на то, что выбросы могут иметь длительность всего 5:20 нc, они доставляют массу неприятностей. Предположим, например, что ИС2, «простодушный свидетель», находящийся вблизи «кристалла-нарушителя», находится в состоянии низкого уровня и управляет схемой ИС3, расположенной несколько дальше. Положительный выброс на земляной шине ИС2 появляется и на ее выходе и, если этот выброс достаточно велик, ИС3 воспримет его как короткий выброс высокого уровня. Таким образом, на ИС3, расположенной на некотором расстоянии от «возмутителя спокойствия» ИС1, появится полноценный логический импульс, готовый помешать работе «добропорядочной» схемы. Много усилий не требуется для того, чтобы запустить или сбросить триггер, и такие выбросы тока по земляной шине блестящее умеют делать подобную работу.
Лучшей профилактикой против таких явлений является: а) использование большого числа земляных шин по всей плате вплоть до применения «земляных поверхностей» (одна сторона двухсторонней печатной платы целиком отводится под землю) и б) обильное использование конденсаторов развязки по всей схеме. Чем мощнее шины земли, тем меньше выбросы, индуцированные током (меньше индуктивность и сопротивление). Роль конденсаторов развязки, включенных между U+ и землей и разбросанных по всей плате, заключается в том, чтобы передать импульсы тока по кратчайшим путям с небольшой индуктивностью и существенно уменьшить выбросы по напряжению (конденсатор работает как локальный источник напряжения, поскольку напряжение на нем существенно не изменяется во время коротких выбросов тока).
Лучше всего установить возле каждой ИС конденсатор емкостью от 0,05 до 0,1 мкФ, хотя может оказаться достаточным и один конденсатор на две-три ИС. Кроме того, для запаса энергии полезно расставить по всей плате танталовые конденсаторы большой емкости (достаточно 20 мкФ, 20 В). Между прочим, конденсаторы развязки между шинами питания и землей рекомендуется ставить в любых схемах, будь то цифровые или линейные. Они помогают превратить шины питания в низкоимпедансные источники напряжения на высоких частотах и предотвращают сигнальную связь между схемами через источник питания. Шины питания без развязок могут привести к непредусмотренному поведению схемы, колебаниям и вообще к головной боли.
Выбросы, обусловленные емкостными нагрузками. Несмотря на развязки по питанию, ваши проблемы еще не закончились. Взгляните на рис. 9.29.
Рис. 9.29. Помехи на шине земли из-за емкостной нагрузки.
Цифровой выход обнаруживает паразитную емкость монтажа и входную емкость ИС, которой он управляет (обычно, 5-10 пФ) как часть общей нагрузки. Для того чтобы осуществить быстрый переход от состояния к состоянию, он должен отобрать от этой нагрузки или подать в нее большой ток в соответствии с I = C(dV/dt). Рассмотрим, например, схему 74АСхх (5-вольтовый выходной перепад за 3 нс), которая управляет общей емкостью нагрузки 25 пФ (это соответствует 3–4 логическим нагрузкам с короткими проводниками). Ток в момент логического перехода составляет 40 мА, т. е. почти на максимальной нагрузочной способности выхода управляющей ИС! Этот ток возвращается через землю (при переходе от высокого к низкому) или через шину +5 В (при переходе от низкого к высокому), индуцируя эти «шустрые» меленькие выбросы, о которых шла речь ранее (для того чтобы получить представление об их величине, примите к сведению тот факт, что индуктивность монтажа составляет примерно 5 нГн/см. На дюйме земляного провода, по которому протекает этот ток логического перехода, появится выброс U = L(dI/dt) = 0,2 В). Если ИС окажется октальным буфером с одновременными переходами на полдюжине выходов, то выбросы по земле превысят 1 В; см. рис. 8.95. Похожие выбросы по земле (хотя и поменьше) появятся вблизи управляемой ИС, где выбросы тока возвращаются на землю через входную емкость управляемого прибора. В синхронных системах с большим числом элементов, одновременно меняющих состояние, ситуация с выбросами-помехами становится настолько серьезной, что схема не в состоянии работать надежно.
Особое значение это приобретает для больших печатных плат с длинными межсоединениями и длинным земляным путем. В такой схеме могут происходить сбои, когда целая группа линий данных меняет свое состояние от верхнего уровня к низкому, вызывая появление кратковременного очень большого тока по земле. Такая информационная зависимость является характерной особенностью сбоев, обусловленных помехами, и хорошим обоснованием для прогона расширенных тестов памяти в микропроцессорных системах (в которых обычно имеется 16 линий данных и 24 адресных линии с самым разнообразным распределением информации).
Наилучший подход к проектированию состоит в том, чтобы использовать массивную разводку земли (для обеспечения низкой индуктивности), лучше всего в виде внутреннего слоя земли на многослойной плате (см. гл. 12) или по крайней мере перпендикулярных земляных проводников с обоих сторон более простой двухсторонней платы. Обильное использование конденсаторов развязки обязательно. Острота этих проблем не так велика для высоковольтных КМОП-элементов (благодаря медленным фронтам); с другой стороны, для логических семейств F, AS и АС (Т) эти проблемы достигают наивысшей остроты. Действительно, семейство АС (Т) настолько склонно к динамическим выбросам тока, что некоторые изготовители (начиная с TI) отказались от традиционного «углового» расположения выводов земли/питания в пользу «центрального» расположения с более низкой индуктивностью выводов; они пошли еще дальше, использовав для снижения индуктивности земли четыре соседних вывода. Учитывая эти проблемы, лучше не применять без нужды быстродействующее логическое семейство; вот почему мы рекомендовали использовать для общих целей логику НС, а не АС.
9.12. Межплатные соединения
В случае логических сигналов, передаваемых между платами, возможностей для появления помех становится все больше. Возрастает емкость проводников, цепь земли становится длиннее, поскольку теперь она проходит по кабелям, разъемным соединителям, платным расширителям и т. п. Поэтому выбросы по земле, возникающие за счет токов во время логических переходов, как правило, больше и вызывают больше беспокойств. Лучше всего стараться избегать передачи между платами тактирующих сигналов с большим коэффициентом разветвления, если это возможно; а провода заземления к отдельным платам сделать достаточно мощными. Если тактирующие сигналы все же передаются между платами, то целесообразно использовать на каждой плате вентиль в качестве входного буфера. В крайнем случае может понадобится ИС линейного формирователя и приемника, но об этом несколько позже. В любом случае критические схемы лучше располагать на одной плате: у вас появляется возможность контролировать индуктивность цепи земли и свести к минимуму емкость монтажа. Проблемы, с которыми вы столкнетесь при пересылке быстрых сигналов через несколько плат, трудно даже оценить; они могут обернуться настоящим бедствием для всего проекта.
9.13. Шины данных
Когда большое число подсхем объединяются в шину данных (более подробно об этом см. гл. 10 и 11), упомянутые проблемы становятся еще более острыми. Более того, появляются новые моменты — эффекты длинных линий, обусловленные длиной и индуктивностью самих сигнальных линий. Для самых быстрых ЭСЛ ИС (ECLIII, ECL100K с фронтом менее 1 нc) эти эффекты становятся настолько важными, что все сигнальные цепи длиной более 1 дюйма следует рассматривать как линии передачи и соответствующим образом их согласовывать.