Вход/Регистрация
Онтогенез. От клетки до человека
вернуться

Дейвис Джейми

Шрифт:

Многовековой опыт использования инструкций для получения задуманного результата с минимальными затратами времени и усилий приводит к тому, что мы склонны считать, что биологическая информация определяет наш внешний вид каким-то похожим образом. Это опасное заблуждение. Между живыми организмами и рукотворными объектами есть существенное отличие: в последнем случае инструкциям следует внешний сознательный агент действия. Даже такие, казалось бы, явные исключения, как автоматическая вязальная машина или механическое пианино, созданы по инструкциям и планам теми же внешними агентами, а значит, исключениями не являются. Проще говоря, кардиганы, симфонии, автомобили и соборы сами себя не создавали. Следование инструкциям, привнесение необходимой информации о процессе (умение вязать, готовить или класть кирпич) и собственно работа с материалами осуществляются не самой растущей структурой, а извне. Напротив, содержащаяся в эмбрионе информация считывается и обрабатывается самим эмбрионом; ему не на кого переложить ни тяжелую физическую работу, ни раздумья об оптимизации процесса. Как мы скоро увидим, это означает, что ответственность за биологическое конструирование лежит на всех его участниках, а не на руководителе, как в случае реализации инженерных проектов. Процесс создания тела человека контролируется не какими-то отдельно взятыми частями эмбриона, а системой в целом.

Чтобы понять особенности процесса построения, необходимо также иметь некоторое представление о природе используемых материалов. Рядом с моей лабораторией в Эдинбургском университете находятся три знаменитых моста: элегантный мост Дин, построенный Томасом Телфордом, легендарный железнодорожный мост через залив, построенный Бенджамином Бейкером, и, неподалеку от него, автодорожный мост Форд-Роуд. Телфорд построил мост из каменных блоков – тяжелых, громоздких, надежных только за счет сжимающего напряжения. Поэтому он использовал традиционный метод: сначала строились опоры, затем сооружался деревянный каркас для арочного пролета, затем на него выкладывались обтесанные в форме арки камни. После того как вес камня стабилизирует пролет, каркас можно удалить.

Бейкер использовал для строительства железнодорожного моста радикально новый по тем временам материал – сталь. Этот материал может держаться как за счет растяжения, так и за счет сжимающего напряжения, поэтому строительство можно было начинать с любой опоры, прикрепляя к ней секции одним концом. Чтобы поместить длинные и относительно легкие стальные секции на нужное место, использовались подъемные краны. Между собой эти секции соединялись с помощью заклепок.

Вантовый мост, самый новый из трех, держится за счет стальных тросов, вант, которые закреплены на пилонах на разных берегах. В данном случае сначала были установлены пилоны, затем намечены опорные точки для крепления тросов, а затем постепенно натягивались держащие мост ванты.

В каждом из этих случаев стратегия строительства моста определялась характером материалов. Ни один из них нельзя было бы построить, используя стратегию, предназначенную для моста другого типа. Так же и в биологии: стратегия конструирования зависит от природы участвующих в нем компонентов. Таким образом, настало время представить вам три ключевых биологических компонента, которые будут много раз упомянуты в этой книге, – это белки, матричная РНК (мРНК) и ДНК.

Белки – основные строительные материалы в биологии. Из них создана большая часть физических структур, которые придают форму клеткам, они образуют каналы и насосы, регулирующие циркуляцию веществ в клетках. Кроме того, белки – катализаторы. Они запускают и контролируют биохимические реакции и метаболические пути, продуктами которых являются другие составляющие организма, например ДНК, жиры и углеводы. Относительную важность белков можно проиллюстрировать, например, таким фактом: эритроциты (красные кровяные тельца) в процессе созревания теряют ядра, в которых содержатся все их гены, но после этого живут еще около ста двадцати дней. Клетка, в которой сохранились гены, но нарушилась функция белков, погибнет в течение нескольких секунд.

Белок состоит из длинной цепи отдельных блоков – аминокислот. Известно около двадцати типов аминокислот, отличающихся по строению и химическим свойствам. Они взаимодействуют друг с другом, и это означает, что цепочки аминокислот могут закручиваться в замысловатые формы – самопроизвольно или под действием других белков. Этот процесс закручивания настолько сложен, что невозможно, зная одну лишь последовательность аминокислот, предсказать, какой именно белок получится в результате. (Компьютерные программы для прогнозирования формы белка существуют, но в них используется сочетание расчетов и вероятностных рассуждений, основанных на уже известной структуре белков и аминокислотных последовательностей, выявленных экспериментально с помощью рентгеновской кристаллографии. Таким образом, эти программы похожи на компьютерные программы, которые используют синоптики; впрочем, надо отметить, что предсказание структуры белков все же точнее прогноза погоды.)

Разные белки состоят из разных последовательностей аминокислот. Они одна за другой присоединяются к растущей цепи белка в порядке, который устанавливается молекулой, называемой матричной РНК (сокращенно мРНК) (рис. 1). Молекула мРНК тоже представляет собой одинарную цепочку отдельных блоков – азотистых оснований: аденина (A), цитозина (C), гуанина (G) и урацила (U). По своей структуре они сходны и по сравнению с аминокислотами не так интересны в плане химических свойств: молекулы мРНК не играют большой роли в клетке помимо регуляции последовательности аминокислот в формирующемся белке. Эта последовательность определяется последовательностью оснований в мРНК. Каждой аминокислоте соответствует свой код из трех азотистых оснований.

Рис. 1. Трансляция белка на рибосоме. Аминокислоты связываются в растущую белковую цепь согласно последовательности оснований мРНК

Последовательность оснований в молекулах мРНК определяется последовательностью оснований в ДНК. ДНК – очень длинная молекула, состоящая из комбинаций четырех азотистых оснований: аденина, цитозина, гуанина и тимина (T), которые могут располагаться в разной последовательности. Отдельные молекулы ДНК, образующие большую часть сорока шести хромосом в каждой клетке нашего тела, содержат миллионы азотистых оснований. Отдельные участки этой цепи представляют собой гены. Когда считывается генетическая информация, молекула РНК кодирует последовательность оснований ДНК (A, C, G, T) на языке своих оснований (A, C, G, U). Таким образом, РНК по сути дела является копией (транскриптом) гена в другой среде. Фактическое считывание генов производится целыми комплексами белков. Сначала они связываются с различными короткими последовательностями оснований в начале гена, АТААТ или TCACGCTGA. Разные гены имеют разные комбинации таких коротких последовательностей, маркирующих их начало, а каждая последовательность связывается с конкретным белком. Таким образом, разные сочетания белков участвуют в активации процесса считывания различных генов.

То, что разные гены активируются разными ДНК-связывающими белками, очень важно, потому что разные клетки организма должны синтезировать разные типы белков. Например, клетки кишечника производят белки, которые позволяют переваривать пищу, клетки яичников синтезируют белки для половых гормонов, а лейкоциты вырабатывают белки для борьбы с микробами. Все эти клетки содержат все гены генома, даже те, которые им никогда не понадобятся. Однако считываются только гены, необходимые конкретным клеткам, и происходит это за счет присутствия «эксклюзивных» ДНК-связывающих белков.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: