Шрифт:
Только теоретические основы аэродинамики, разработанные Н. Е. Жуковским, стали тем фундаментом, на котором прочно обосновалась современная авиация.
То же самое можно сказать об электронике и радиотехнике. Опыты Герца с электромагнитными волнами предшествовали открытию радиосвязи А. С. Поповым, а широкое применение фотоэффекта в автоматике началось после исследования А. Г. Столетовым этого нового и интересного физического явления.
Подобных примеров можно привести очень много, и все они свидетельствуют о том, что без знания законов физики невозможно добиться значительных научных и технических достижений.
Но значение физики не исчерпывается этим. Физика дает нечто существенно более важное, чем понимание и практическое использование отдельных открытий и изобретений.
Дело в том, что основные закономерности физики представляют собой единую систему взаимосвязей, объединяющих материю в объективно существующую основу всего многообразия окружающего нас мира.
В. И. Ленин в работе «Материализм и эмпириокритицизм» указывал, что единство материи проявляется в сходстве тех математических формул, которые можно применить для выражения закономерностей, наблюдаемых в различных явлениях, с первого взгляда очень мало похожих одно на другое.
Вот это единство материи, познаваемое и выражаемое совокупностью основных законов физики, должен учитывать каждый человек, изучающий науку и технику. И только в этом случае можно сравнительно легко и быстро сопоставлять старое и новое и смело заглядывать вперед, предвидя громадные перспективы едва еще намеченных проблем.
Цель настоящей брошюры — показать на некоторых примерах, как развивались физика и техника, основные проблемы и задачи которых всегда имели и имеют глубокую взаимосвязь. Наличие такой взаимосвязи является непременным условием научного и технического прогресса.
РАЗВИТИЕ ФИЗИКИ И ТЕХНИКИ В XVII–XIX веках
Еще в глубокой древности ученые занимались наблюдением различных физических процессов и явлений. Так, Лукреций, Эпикур, Демокрит (VI в. до н. э. — II в. н. э.) высказывали идеи об атомистичности вещества; были открыты некоторые законы гидростатики (закон Архимеда), объяснен принцип работы рычага и некоторых других простейших механизмов.
Галилей положил начало экспериментальной физике, научно обосновал и сформулировал закон инерции, имеющий чрезвычайно важное значение в физике.
В 1687 г. Ньютон, который по праву считается одним из создателей механики, в своей работе «Математические начала натуральной философии» сформулировал один из основных законов механики о зависимости ускорения тела от его массы и действующей силы.
На основе законов Кеплера и закона всемирного тяготения, открытого Ньютоном, стало возможным заранее вычислять орбиты Луны и планет, т. е. появилась реальная научная база, на которой можно было строить небесную механику и прикладную астрономию.
Развитие мануфактурного и машинного производства потребовало решения множества задач, связанных с динамикой твердого тела, гидродинамикой и гидростатикой. В результате развитие техники привело к созданию основ гидродинамики — учения о движении жидкостей (закон Бернулли).
Широкое внедрение машинной техники во все отрасли производства стало возможным после изобретения паровой машины.
Работы Карно объяснили сущность взаимосвязи двух видов энергии — тепловой и механической. В результате были усовершенствованы паровые двигатели, которые в то время являлись основными механизмами, приводящими машины в действие.
Исследования Ломоносова и Лавуазье привели к систематическому изучению химических явлений на основе закона сохранения массы.
В первой половине XIX века были открыты электрический ток и электромагнитные явления. Эти открытия существенным образом изменили представление о веществе и положили начало электротехнике, радиофизике и радиоэлектронике, атомной физике и др.
Как нередко бывает в жизни, открытие какого-либо нового явления часто вызывает сомнения в возможности его практического использования. В самом деле, мог ли человек, видевший, как под действием слабого электрического тока вздрагивает лапка лягушки или под действием непонятных в то время причин отклоняется стрелка компаса, находящегося вблизи проводника, по которому протекает электрический ток, представить себе, каково будет практическое применение таких «незначительных» явлений? Конечно, нет.
Только в процессе развития науки и техники, порой через много лет после открытия, становится понятным значение того или иного явления. Кто бы мог подумать, что открытие Резерфордом особенностей при рассеянии потока а-частиц тончайшей золотой фольгой приведет к созданию атомной физики и квантовой механики, а открытие радио-активности — к овладению ядерной энергией?
Прогресс техники невозможен без прогресса науки точно так же, как и наука не может развиваться без развития техники. В этом состоит диалектическое единство науки, в частности физики, с одной стороны, и техники — с другой.