Шрифт:
Спектральный анализ показал, что в атмосфере бурых карликов, как и в воздушной оболочке Юпитера или Сатурна, содержится метан. Есть там и водяные пары, и, очевидно, пылевые облака (последнее можно установить по небольшим колебаниям яркости). Если облака есть, то и на бурых карликах, как у нас на Земле, должны наблюдаться погодные феномены.
В компьютерной модели, составленной группой астрономов из Вашингтонского университета во главе с Катариной Лоддерс, в атмосфере бурых карликов могут даже возникать облака и клубы тумана из жидкого железа. По крайней мере, спектральный анализ показал, что эти небесные тела содержат гидрид железа, который может конденсироваться в жидкое железо. По предположению Лоддерс, в атмосфере бурых карликов протекают конвекционные процессы и погода регулярно меняется.
Из Гейдельбергского института астрономии пришло сообщение о том, что у бурого карлика SOn45 наблюдаются колебания яркости. Однако независимые эксперты пока не пришли к выводу, чем это объясняется — облачной пеленой, застилающей поверхность карлика, или... пятнами на нем — такими же пятнами, как на Солнце. Можно лишь подсчитать, что примерно пятая часть поверхности этой карликовой "звезды" покрыта пятнами или затянута облаками. Более определенно можно судить лишь о молодых белых карликах. Расчеты показывают, что их атмосфера разогрета до 2000 градусов по Цельсию, а при такой температуре в воздухе уже не будет витать пылевая взвесь.
Когда-то считали, что загадочная темная материя состоит из... бурых карликов. Надежды оказались напрасными.
Поиск темной материи продолжается. Поиск бурых карликов тоже.
По сообщению Ральфа Нойхойзера, директора Астрофизического института при Йенском университете, некоторые бурые карлики испускают рентгеновское излучение. При их невысокой температуре это выглядит странно. Очевидно, данные объекты обладают очень мощным магнитным полем, но в таком случае на их поверхности, как на нашем Солнце, должны появляться пятна.
Итак, одни свойства сближают бурые карлики с планетами, другие — со звездами. Астрономы же, пытаясь детально объяснить их происхождение, жонглируют двумя теориями — теориями возникновения звезд и планет.
Звезды рождаются в центре протозвездного облака, имеющего форму диска. Планеты возникают на периферии этого газопылевого облака — там, где пылинки слипаются в комья, а последние под действием гравитации сливаются в планетоиды.
Возможно, бурые карлики образуются, когда рост звезды по какой-либо причине прекращается. Такое может произойти в двойных звездных системах, когда один из партнеров выталкивает другого, прежде чем тот дорастет до размеров настоящей звезды. Причиной коллизии может стать сила притяжения оказавшейся поблизости звезды, увлекающей за собой "недоношенную" звезду.
Может статься, что в окрестности газопылевого облака, где рождается карлик, окажется очень горячая звезда. Под действием испускаемых ею ультрафиолетовых лучей материя облака испарится быстрее, чем карлик успеет превратиться в звезду.
Однако недавние открытия астрономов заставили усомниться в этих сценариях. Павел Кроупа из Кильекого университета и Жером Бувье из Гренобльской обсерватории, наблюдая за известной областью рождения звезд — темными облаками в созвездии Тельца, обнаружили там целый ряд бурых карликов, но поблизости от них не было никаких горячих звезд, которые помешали бы этим карликовым образованиям вырасти в нормальную звезду. Сами карлики были окружены пылевыми дисками.
По данным Рэя Джаявардханы из Мичиганского университета, около половины исследованных бурых карликов, по-видимому, окружены подобными дисками.
Очевидно, карлики образуются так же, как звезды, внутри газопылевых дисков, а на их периферии могут рождаться планеты. У карликов есть свои планетные системы! Так, наблюдение за карликом CFHT BD-Tau 4 в созвездии Тельца показало, что материи вокруг него хватит на такую планету, как Юпитер.
Это открывает новые возможности изучения внесолнечных планетных систем (о современном уровне развития этой области астрономии смотрите статьи в "ЗС", 2004, № 7). Обычно планеты теряются в ярком блеске звезды, остаются недоступны для наблюдателей. Звезды ярче их в миллиарды раз. Возле бурого карлика — тусклой точки на небосводе — и планеты выступают из тени. Их можно будет наблюдать в более мощные телескопы.
Ф. Инфантэ
Станет ли светлым "темное прошлое"?
Всего пока выявлено около трех сотен бурых карликов. Однако их основные параметры—диаметр и масса — по-прежнему вычисляются лишь с помощью теоретических моделей. Но насколько хороши эти модели? По ним невозможно даже вычислить возраст бурого карлика, если известна его температура. Ведь его эволюция заметно отличается от жизненного пути звезды — она во многом зависит от его массы. Чем тяжелее бурый карлик, тем выше его температура. Так, у карлика, чья масса примерно в 75 раз превышает массу Юпитера, даже через миллиард лет будет такая же температура, как у карлика, весящего в 5 раз меньше и родившегося 200 миллионов лет назад. У карликов "темным" оказывается не только настоящее, но и прошлое.
Лишь в конце 2002 года удалось получить хоть какой-то объективный показатель. Помогли наблюдения за созвездием Индейца в Южном полушарии. Там, вблизи от звезды Epsilon Indi немецкие астрономы обнаружили бурый карлик. Два небесных тела разделяло 400 угловых секунд, что примерно в 1460 раз больше расстояния между Землей и Солнцем. Расстояние до звезды Epsilon Indi очень точно известно — 11,8 световых лет. Возраст тоже: от 0,8 до 2 миллиардов лет. Возраст соседнего с ней карлика должен быть точно таким же. Так что карлик Epsilon Indi В стал первым объектом, по которому астрономы могут ориентироваться, изучая бурых карликов.