Вход/Регистрация
Естественные системы. Концепция формирования. Золотая пропорция
вернуться

Аксютин Николай

Шрифт:

Образование элементов каждого уровня производится из элементов предыдущего уровня и первичных элементов посредством операции «системного умножения». Связи между первичными элементами в первом уровне, между элементами в блоках, между блоками внутри уровней, между соседними уровнями и между блоками системы определяются одними и теми же операциями «системного сложения» и «системного умножения», а также матрицей влияния. Конкретнее о системных операциях и матрице влияния изложено ниже.

2.4. Устойчивость системы

Под устойчивостью понимается способность системы сохранять свою целостность и параметры при воздействии внутренних (для системы) и внешних факторов.

Под устойчивостью к внутренним факторам подразумевается способность системы сохранять свою целостность и свойства в связи с усложнением элементов и блоков при формировании все более высоких уровней. Примером неустойчивости к внутренним факторам является естественная радиоактивность, когда при некоторых соотношениях протонов и нейтронов ядро атома становится неустойчивым и распадается.

Под устойчивостью к внешним факторам имеется в виду способность системы сохранять свою целостность и свойства при воздействии факторов окружающей среды. Реальная система живет в пространстве и времени, насыщенными другими объектами и системами, не всегда благоприятно на нее воздействующими.

Представляется целесообразным введение понятия «системная устойчивость» в рамках понятия «устойчивость к внешним факторам». Все объекты можно разделить на два множества – «системоустойчивые» и «системообразующие». Системоустойчивые объекты при взаимодействии с другими объектами сохраняют свою целостность и свойства и продолжают оставаться самостоятельными объектами природы (например, молекулы газа в ограниченном объеме). Системообразующие объекты при взаимодействии с некоторыми другими объектами могут образовывать новые структуры, субъектами которых они становятся, при этом перестав быть самостоятельными системными объектами природы (например, молекулы водорода и кислорода при взаимодействии образуют молекулу воды, две системных сущности исчезли, новая появилась, хотя сами атомы водорода и кислорода не исчезли).

Понятие системоустойчивости весьма относительно и зависит от внешних условий. Один и тот же объект в одних условиях может быть системоустойчивым, в других нет.

Естественно полагать, что системоустойчивые объекты не могут образовывать сложные системы, в то время как системообразующие их и формируют.

2.5. Фракталы, фрактальность

Далее неоднократно упоминаются термины фрактал, фрактальность. Поэтому кратко уточним суть этих терминов применительно к тематике «Концепции…».

Удовлетворительного определения фрактала не существует. Но в соответствии с (6) «фрактал – это структура, состоящая из частей, которые в каком-то смысле подобны целому». В нашем случае термин «…в каком-то смысле…» означает структурное подобие частей системы и системы в целом.

Там же приведено и другое понятие фрактала: «фракталом называется множество, размерность Хаусдорфа – Безиковича для которого строго больше его топологической размерности». Любое множество с нецелым значением размерности является фракталом. Размерность фрактала называется фрактальной размерностью (размерностью подобия).

Фрактал может иметь и целочисленное значение. Таким образом, топологическая размерность является частным случаем фрактальной размерности.

Большинство фракталов инвариантны при некоторых преобразованиях масштаба. Такие фракталы называются масштабно-инвариантными.

Фрактал, инвариантный при обычном преобразовании подобия, называется самоподобным. Сложные естественные системы самоподобны и, соответственно, являются фракталами.

Фрактальность – свойство системы быть фракталом.

Фрактальная размерность есть мера самоподобия системы и определяется выражением:

D = -logN/logf, где

D – фрактальная размерность;

N – количество «субобъектов» (характерных объектов);

f – коэффициент сокращения длин (изменение масштаба).

Необходимо отметить, что положения (6) относятся к геометрическим объектам. Поэтому целесообразно сложную систему формализовать в некое «абстрактное репрезентативное пространство» (6) с объектами системы.

В формате «Концепции…» нет необходимости оценки фрактальной размерности каких-либо систем.

Закономерен вопрос – чем обусловлена фрактальность сложных естественных систем? При просмотре литературы удовлетворительного ответа не обнаружено. Можно полагать, что фрактальность системы есть следствие ее устойчивости к воздействию внешних и внутренних факторов на всех уровнях формирования. Конкретнее – фрактальность (структурная инвариантность) есть следствие сохранения устойчивости первого уровня при формировании вышестоящих уровней системы.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: