Шрифт:
Из проведенного им анализа взаимоотношений принципа противоречия с другими логическими законами следует, что этот принцип не является исходным, не является самым простым, не является очевидным, не является обязательным для других законов и не является независимым. Более того, в обширном дополнении [30] к своей книге Лукасевич показывает, что принцип противоречия выводим из других законов [31] . Все это дает ему право не считать принцип противоречия таким, каким его представляет Аристотель. В главе XVI под названием «Неаристотелева логика», Лукасевич пытается создать контекст, в котором принцип противоречия не работает, однако само построение новой логики откладывается. На этом мы остановимся позже.
30
Дополнение называется «Принцип противоречия и символическая логика» и во многом основывается на книге Л. Кутюра «Алгебра и логика», изданной в 1905 г. (переведена на русс. яз. в 1909 г.)
31
Для Лукасевича оказалось весьма значимым, что принцип противоречия доказуем из других законов логики. Но здесь нет ничего необыкновенного. Приведем интересный пример, принадлежащий А.А. Маркову, который на страницах «Большой Советской Энциклопедии» в статье «Логика» (1973, т. 14, с. 599) приводит доказательство закона противоречия – .(Л & – Л) в исчислении интуиционистской логики Int. Это лишь означает, что закон уже предполагается данным, т. е. Int можно сформулировать так, чтобы одной из аксиом стал сам закон противоречия. Таким образом, если этот закон не предполагается, то его доказать нельзя.
6. Такова внешняя, видимая сторона происходящего. На самом деле под этим кроется нечто гораздо большее, а именно, попытка переосмысления границ человеческого мышления. Открытие неевклидовых геометрий, сделанное в первой половине XIX века К.Ф. Гауссом, Н.И. Лобачевским и Я. Бояйи, стало событием, которое повергло в смятение многие великие умы. Вплоть до XIX века никто не сомневался, что евклидова геометрия описывает единственно возможный реальный физический мир, и вдруг – революция в области человеческого сознания, приведшая к полному пересмотру научных представлений о геометрии Вселенной. Можно утверждать, что принцип противоречия Аристотеля стал для Лукасевича тем же самым, что пятый постулат геометрии Евклида о параллельности [32] , отвергнутый вышеупомянутыми учеными. Вот как об этом пишет Лукасевич во вступлении к своей книге: «…действительно ли, из всех [принципов] этот принцип является краеугольным камнем всей нашей логики, или его можно преобразовать и даже убрать, создав систему неаристотелевой логики подобно тому, как посредством преобразования аксиомы о параллельных, была создана система неевклидовой геометрии». Таким образом, Лукасевич покушается ни много, ни мало, а на святое святых – на саму логику.
32
Этот постулат в современной литературе формулируется так: в плоскости через точку, не лежащую на данной прямой, можно провести только одну прямую, параллельную данной.
Примечательно, что Лукасевич был не единственным человеком, кого потрясло открытие неевклидовой геометрии и подвигло на создание неаристотелевой логики. Одновременно с книгой Лукасевича выходит статья казанского философа, психолога и логика Н.А. Васильева [Васильев 1910], в которой говорится о «совершенно различной логике» на основе нового деления суждений “по качеству” – утвердительные, отрицательные и индифферентные. Последнее позволяет Васильеву рассматривать суждения вида «x есть P и x не есть P». Как следует из книги В.А. Бажанова о творчестве Н.А. Васильева, уже во второй половине 1910 г. Васильев вводит понятие воображаемой логики, развивает концепцию множественности логических систем и распространяет критику основных законов логики на закон противоречия (см. [Бажанов 2009: 124]). Этому посвящены последующие работы Васильева [33] . Как и у Лукасевича, мы находим: «Неаристотелева логика есть логика без закона противоречия. Здесь не лишним будет добавить, что именно неевклидова геометрия и послужила нам образцом для построения неаристотелевой логики» [Васильев 1912/1989: 54] [34] . Одновременно с Лукасевичем и Васильевым построением новой логики под воздействием открытия новой геометрии вдохновился еще один ученый – американский философ, логик, математик, основоположник прагматизма и семиотики Ч. С. Пирс. В журнале “The Monist” опубликованы отрывки из писем Пирса о занятиях неаристотелевой логикой. В его письме есть такие слова: «… я осмысливал ситуацию, когда допускается, что законы логики отличны от тех, которые мы знаем. Это была своего рода неаристотелева логика в том же смысле, в каком мы говорим о неевклидовой геометрии» (см. [Carus 1910a: 45]) [35] .
33
См. [Васильев 1912] и [Васильев 1913].
34
Как следует из [Raspa 1999, примечание 88], первым, кто на Западе обратил внимание на эти работы, был ученик Лукасевича Антоний Корчик [Korcik 1955]. Однако известность идеям Васильева на Западе принесла статья В.А. Смирнова [Смирнов 1962], которая была прореферирована Д. Коми [Comey 1965].
35
См. также [Carus 1910b]. На это обратил внимание В.А. Бажанов в [Bazhanov 1992], где он пишет о влиянии Пирса на логические работы Васильева. Интересно, что в [Бажанов 2009] об этом не сказано ни слова. Данная тематика со ссылкой на [Bazhanov 1992] обсуждается также в [Raspa 1999].
Так революция в геометрии произвела революцию в логическом мышлении.
7. Вторым событием, поразившим современников, был кризис в основаниях математики, продолжающийся до сих пор и наиболее ярко выразившийся в парадоксе Рассела (1902 год). Лукасевич подробно рассматривает его в XVIII главе под названием «Принцип противоречия и конструкции разума». Стандартная формулировка этого парадокса выглядит так. Пусть K – множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента? Если да, то по определению K оно не должно быть элементом K – противоречие. Если нет – то по определению K оно должно быть элементом K – вновь противоречие. Таким образом, в этой конструкции разума мы получаем, что доказуемы оба высказывания (K K) и – (K K), а следовательно, и их конъюнкция. Тогда доказуема произвольная формула B (см. выше). Хотя Лукасевич и говорит здесь, что он не будет пытаться решить эту проблему, но, тем не менее, отмечает, что «у нас есть выбор: либо не использовать принцип противоречия, либо отбросить принцип исключенного третьего [36] ». Что касается принципа исключенного третьего, то при формулировке парадокса Рассела без него можно обойтись (см. примечание 2 к гл. XVIII), а вот не применение или ограничение принципа противоречия в самой теории множеств выливается в построение паранепротиворечивой теории множеств (см. [Brady 1989]).
36
Принцип исключенного третьего (лат. tertium non datur) Лукасевич формулирует так: два противоречащих высказывания не являются одновременно ложными, а следовательно, одно из них должно быть истинным.
Спустя более полувека после публикации этого парадокса в книге [Френкель и Бар-Хиллел 1966: 18], ставшей классикой, подчеркивается: «С самого начала следует уяснить, что в традиционной трактовке логики и математики не было решительно ничего, что могло бы служить в качестве основы для устранения антиномии Рассела. ‹…› Некоторый отход от привычных способов мышления явно необходим, хотя место этого отхода заранее не ясно». Можно только догадываться, что испытывал Лукасевич, поглощенный мыслью о построении новой логики, когда столкнулся с очень простой, но явно противоречивой конструкцией разума в виде парадокса Рассела.
Обнаружение противоречий в «области априорных конструкций сознания», а также идея Мейнонга [37] о противоречивых, т. е. невозможных объектах типа «круглый квадрат», для которых принцип противоречия не имеет места (1907 г.), несомненно вдохновляют Лукасевича на критику принципа противоречия. С пафосом он обвиняет в противоречиях самого Аристотеля, погруженного в волны противоречия, «которые захлестывают, кажется, весь мир!» (гл. XIII). Последние слова весьма примечательны: если мир таков, то какой должна быть логика в этом мире? Заметим, что у Лукасевича в сильнейшей степени развито чувство соответствия между онтологией и логикой, индетерминистская концепция мира привела его в дальнейшем к «индерменистской» (трехзначной) логике.
37
В книге имеется ряд ссылок на А. Мейнонга; в данном случае см. гл. XVII. Интересно, что Мейнонг во втором издании своей известной работы «Uber Annahmen» (Leipzig, 1910: 228) цитирует абстракт [Lukasiewicz 1910b] данной книги Лукасевича.
8. Возникает вопрос, почему, несмотря на дерзкий характер книги, революция в логике так и не состоялась? Как это ни странно, но Лукасевич почувствовал, что объект, исходный материал, основание переворота, т. е. сам принцип противоречия оказался слишком сложным для этой цели [38] . Показательно, что в ходе написания книги отрицательное отношение Лукасевича к принципу противоречия постепенно смягчается и критика направляется не столько на принцип противоречия, сколько на его абсолютизацию Аристотелем. Отвергая логическую ценность этого принципа, Лукасевич, тем не менее, считает, что он «имеет важную практически-этическую ценность, будучи единственной защитой против ошибок и лжи и поэтому мы должны его признавать» (курсив наш. – А.К.). Этим неожиданным признанием и заканчивается книга, изобилующая довольно-таки тонкими хитросплетениями аналитической мысли, показавшая высочайшую эрудицию Лукасевича в различных областях философии, логики, математики и сделавшая его знаменитым.
38
На самом деле для этого еще не пришло время, поскольку логическая техника не было достаточно развита и осмыслена, чтобы уметь работать с противоречиями. Только в 1948 г., другим выдающимся представителем Львовско-Варшавской школы, а именно С. Яськовским, была сконструирована первая система паранепротиворечивой логики (см. английский перевод в [Jaskowski 1967]).
Книга «О принципе противоречия у Аристотеля» оказала значительное влияние на развитие логико-философской мысли в Польше. По словам Я. Воленьского: «Как исторический труд книга обрела громадное признание у всех, кто занимался логикой и метафизикой Аристотеля и был склонен к знакомству с книгой Лукасевича» [Wole'nski 1987: XLIII]. С. Лесьневский считает книгу Лукасевича одной из самых интересных и оригинальных в известной ему философской литературе [Лесьневский 1913: 2] [39] . Однако Лесьневский критикует Лукасевича и сильно расходится во взглядах на существование или не существование противоречивых предметов. Если Лукасевич, следуя Мейнонгу, допускает их, что дает ему основание для отрицания онтологического принципа противоречия, то Лесьневский категоричен: «каждый предмет не заключает в себе противоречия» (с. 54). Как считает Лесьневский, это следует из предложенного им доказательства онтологического принципа противоречия.
39
Данная статья является переводом Лесьневским своей работы из “Przegland filozoficzny», № 2 за 1912 год. Как сказано в предисловии, при переводе с польского эта работа подверглась «дополнениям и иным изменениям».