Шрифт:
Таких квадратов нашлось 40, например:
233 | 167 | 389 |
419 | 263 | 107 |
137 | 359 | 293 |
Сумма чисел равна вполне красивому числу 789.
Т. к. число вариантов перебора больше, программа работает дольше. Время поиска составило 724 с для Python-версии и 316 c для программы на C++.
T = 316.00s = C++
T = 724.4s = Python
Если же рассматривать минимально возможный квадрат из простых чисел, то его сумма равняется тоже вполне «красивому» числу 111:
7 | 61 | 43 |
73 | 37 | 1 |
31 | 13 | 67 |
Примером квадрата 4х4 может быть квадрат с также «красивой» суммой 222:
97 | 41 | 73 | 11 |
17 | 47 | 83 | 75 |
59 | 79 | 13 | 71 |
49 | 55 | 53 | 65 |
9. Числа Фибоначчи
Возьмем 2 числа: 0 и 1. Следующее число рассчитаем как сумму предыдущих чисел, затем повторим процесс.
Мы получили последовательность, известную как числа Фибоначчи:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, ...
Эта последовательность была названа в честь итальянского математика 12 века Леонардо Фибоначчи. Фибоначчи рассматривал задачу роста популяции кроликов. Если предположить, что новорожденная пара кроликов 1 месяц растет, через месяц начинает спариваться, и затем через каждый месяц дает потомство, то количество пар кроликов несложно подсчитать:
Как можно видеть, число пар образует как раз те самые числа Фибоначчи. Сама последовательность Фибоначчи кажется простой. Но чем она интересна? Пример с кроликами не случаен — эти числа действительно описывают множество природных закономерностей:
– Множество растений имеют количество лепестков, равное одному из чисел Фибоначчи. Количество листьев на стебле также может описываться этим законом, например у тысячелистника.
– Другое известное изображение — спираль Фибоначчи, которая строится по похожему принципу соотношения размеров прямоугольников:
Это изображение также часто встречается в природе, от раковин моллюсков, до формы атмосферного циклона или даже спиральной галактики.
Для примера достаточно взять фотографию циклона из космоса, и наложить обе картинки вместе:
– Если взять и разделить друг на друга 2 любых соседних члена последовательности, например 233/377, получится число 0,618. Случайно это или нет, но это число — то самое «золотое сечение», считающееся наиболее эстетичной пропорцией.
Числа Фибоначчи несложно вывести в программе на языке Python:
Интересно заметить, что растет последовательность Фибоначчи весьма быстро, уже
F(300) = 222232244629420445529739893461909967206666939096499764990979600.
10. Высота звуков нот
Еще в древности человек заметил, что натянутая струна порождает колебания звука. Во времена Пифагора было замечено, что струны издают мелодичный звук, если их длина соотносится как небольшие целые числа (1:2, 2:3, 3:4 и т. д.). Звук от струны длиной 2/3 дает чистую квинту, 3/4 струны дает кварту а половина струны — октаву.
Рассмотрим струну с условной длиной = 1. Будем умножать длину струны на 3/2, если полученное число больше 2, разделим еще на 2.