Шрифт:
Столь большие успехи породили у некоторых людей мнение, что теперь наступает пора прямых исследований и что телескоп со временем перестанет быть главным орудием исследования Вселенной, потому что путешествия человека к звездам и тем более на другие планеты сделают его ненужным.
Это — ошибочное мнение.
Несомненно, люди посетят планеты, и, видимо, в первую очередь Марс. И очень хотелось бы, чтобы это произошло еще при жизни создателей первого спутника. Но самые крупные планеты солнечной системы, к сожалению, еще надолго останутся недоступными для человека. Главное средство обороны этих планет от посягательств землян — огромная сила тяготения. Так, например, на Юпитере, самой большой планете солнечной системы, все тела приобретают вес в 3 раза больший, чем на Земле. Даже если не будет никаких других препятствий [24] , посадка ракеты на Юпитер и ее возвращение хотя бы к одному из спутников этой планеты из-за очень большой силы тяготения вряд ли окажутся возможными в ближайшие десятилетия. Что же касается визита на какую-нибудь звезду или хотя бы близкого подлета к ней, то такая экспедиция никогда не будет возможной — достаточно лишь вспомнить о температурах, существующих на поверхности звезд, чтобы понять это.
24
Может оказаться, что Юпитер вовсе не имеет «тверди», то есть, что плотность внешних слоев его поверхности недостаточно велика.
Таким образом, телескоп навсегда останется одним из главных инструментов, с помощью которого будет вестись большинство астрономических наблюдений и исследований. Но это вовсе не означает, что развитие ракетной техники никак не повлияет на эти исследования. Оно уже начало сказываться на них. И о первых результатах здесь будет сказано несколько слов.
Часто говорят, что телескоп увеличивает наблюдаемые объекты. Это неверно. Изображение в телескопе всегда меньше наблюдаемого небесного тела. Правильнее говорить, что телескоп увеличивает угол, под которым наблюдается тот или иной объект. Иными словами, изображение в телескопе имеет увеличенные угловые размеры в сравнении с видимыми невооруженным глазом. Телескоп как бы приближает к нам наблюдаемые объекты. Однако такое увеличение не всегда возможно даже при использовании самых больших телескопов. И вот почему.
Объекты астрономических наблюдений в зависимости от угловых размеров, наблюдаемых невооруженным глазом, можно разделить на две категории.
К первой относят все небесные тела, угловой размер которых, определяемый как отношение поперечника тела к его расстоянию до Земли, достаточно велик. К таким объектам в первую очередь следует отнести Солнце и Луну, видимые под углом в 0,5°. Сюда же входят и планеты, хотя их угловые размеры значительно меньше: у Юпитера — 57', или 0,0158°, а у Марса — не более 19,2', или 0,00535°. Многие галактики тоже видны под большими углами, даже значительно большими, чем Солнце и Луна. Например, туманность Андромеды, вернее, ее главное тело, имеет около 40' в ширину и 160' в длину. Однако расстояние до нее так велико, что ее яркость соответствует девятой звездной величине. И даже глазу, вооруженному телескопом, она представляется не очень яркой звездой. Только фотографирование с большой выдержкой позволяет получить ее четкое изображение.
Вторая категория — так называемые точечные объекты — очень многочисленна. К ней относятся все звезды. Самая близкая из них так далека от нас, что численное значение отношения ее поперечника к расстоянию до Земли необычайно мало. Даже при максимальном теоретически возможном увеличении телескопа звезда все равно будет выглядеть светящейся точкой — такой же, как и при наблюдении невооруженным глазом. Изображение звезды в телескопе будет отличаться лишь большей яркостью да отсутствием лучей, которые мы видим у ярких звезд.
Итак, объекты первой группы при рассмотрении в телескоп приобретают большие угловые размеры, при этом на их поверхности могут быть различены детали, недоступные невооруженному глазу; а угловые размеры точечных объектов остаются практически неизменными.
Зачем же в таком случае рассматривать их в телескоп?
Прежде чем ответить на этот вопрос, отвлечемся от астрономии.
В некоторых районах нашей страны вода в источниках очень жесткая: она плоха и для стирки, и для мытья. В таких местах очень ценится дождевая вода. И, когда начинается дождь, люди, запасаясь водой, ставят под его струи ведра, корыта, тазы. Но ни одному даже самому несведущему в физике и математике человеку не придет в голову выставить под дождь бутылку — слишком мало капель попадет в ее узкое горлышко.
Нечто похожее происходит и при наблюдении звезд.
Все лучи, приходящие на Землю от какой-либо звезды, имеют практически одно и то же направление. Иными словами, пути всех фотонов, мчащихся от этой звезды к Земле, параллельны. Оптическая система, находясь на пути такого «дождя» фотонов, меняет направление каждого из них таким образом, что пути их перекрещиваются в одной точке. В глазу эта точка (фокус) находится на сетчатке, а в телескопе — в фокальной плоскости, где обычно устанавливается фотопластинка. Захваченные входным зрачком оптической системы световые кванты отдадут свою энергию: в глазу — палочкам и колбочкам, в телескопе — светочувствительным зернышкам фотоэмульсии или опять-таки палочкам и колбочкам глаза наблюдателя.
В невооруженный глаз фотонов попадает очень мало, а на фотопластинку или в глаз наблюдателя, вооруженный телескопом, — значительно больше.
Это и понятно. Ведь наибольший диаметр зрачка человеческого глаза не превышает 8 миллиметров. И, следовательно, площадь, с которой глаз собирает капли светового «дождя» — фотоны, равна 50 квадратным миллиметрам. Зато входной зрачок построенного в США телескопа имеет диаметр 5000 миллиметров. Площадь его равна 19,6 квадратного метра, то есть примерно такая же, как площадь жилой комнаты средних размеров. Соотношение площадей двух этих зрачков показывает, что в единицу времени телескоп собирает в 392 тысячи раз больше фотонов. Хороший наблюдатель в самых благоприятных условиях может увидеть невооруженным глазом звезды шестой величины. С помощью 5-метрового телескопа ему же удастся увидеть звезды 18—19-й величины.
Невооруженный глаз в нашем случае можно сравнить с узкогорлой бутылкой, а телескоп — с огромным чаном. И если продолжать эту аналогию, то при наблюдении в телескоп глаз можно уподобить бутылке, а телескоп — воронке с очень широким раструбом, собирающей все капли — фотоны и «вливающей» их в узкое отверстие глаза.
Оптические схемы телескопов.
В наше время астрономы довольно редко смотрят на звезды. Наблюдателя уже довольно давно сменила фотопластинка. Это удобнее по многим причинам, но наиболее важные из них, пожалуй, две.