Шрифт:
Взаимосвязь асимметрии с регуляцией уровня энергообмена организма подчеркивает усиление ее при стрессе. О важности феномена свидетельствует также эволюция проявлений морфо-функциональной асимметрии на всех уровнях организации живого. Примером может служить быстрый переход в эволюции плана тела животных от пятилучевой симметрии к трехосевой асимметрии, что отражает процесс адаптации плана тела живых организмов к трехмерному окружающему пространству.
Итак, перечислим кратко свойства живых организмов, позволяющие снижать рост обобщенной энтропии вопреки второму началу термодинамики. Среди них: сопряжение обратимых и необратимых процессов, структурная и функциональная организация потоков энергии, эндогенные источники энергии и информации, память, концентрация внимания, доминанта, торможение, асимметрия, способность регулировать гомеостазис и степень «открытости» организма как неустойчивой термодинамической системы во взаимодействии с окружающей средой. Эти свойства позволяют поддерживать достаточно низкую скорость роста энтропии, а также быть относительно независимыми от окружающей среды. Можно предположить, что термодинамическая «пластичность» и разнообразие путей «обхода» запрета второго начала термодинамики живыми организмами являются весомыми факторами, определяющими специфику живого (Чернышева, Ноздрачев, 2006). Кроме того, процессы жизнеобеспечения, связанные с делением, ростом и дифференцировкой клеток, метаморфозами и регенерацией, движением и поведением, не приводят к «тепловой смерти», но сохраняются в течение жизни и могут передаваться генетически благодаря названным «антиэнтропийным механизмам» (термин Ю. А. Романова, 2000).
Общеизвестно, что живые организмы как открытые термо-динамические системы обмениваются с окружающей средой материей, энергией, информацией и, добавим, временем. Последнее согласуется с тезисом о существовании времени только для открытых систем (Левич, 2013). Для успешности такого обмена необходимым условием является способность биосистемы создавать материю, генерировать энергию, информацию и время. Это подтверждают способность к образованию молекул веществ в процессах синтеза, метаболизма нутриентов поглощаемой пищи и катаболизма синтезированных веществ, а также выделение энергии в реакциях метаболизма, дефосфорилирования макроэргов (АТФ, ГТФ, КФ и др.) и других молекул или же их депротонирования и т. д. В частности, известно, что в процессах генеза и процессинга информации в нервной системе усиление активности Na,K-ATФазы клеточной мембраны нейрона на фазе следовой гиперполяризации потенциала действия приводит к восстановлению асимметрии концентрации ионов Na+ и K+ и потенциала покоя мембраны, а реаптейк транспортерами молекул нейромедиатора на уровне пресинаптической мембраны осуществляется на градиенте Н+ или Na+. Известно, что процессы сокращения и расслабления скелетных мышц при поддержании позы или двигательной активности также осуществляются при участии Na,K-ATPазы и Са,Mg-ATPазы, способных присоединять молекулы АТФ, дефосфорилировать их, а выделившуюся энергию частично использовать на перенос ионов через мембраны против градиента их концентраций. Каждый из этих процессов характеризуют временные параметры (латентность, длительность, скорость), что позволяет говорить о них как о временных процессах.
Постулируем взаимосвязь биологического времени с информацией, метаболизмом и энергией. Для формализации такой взаимосвязи рассмотрим особенности взаимодействия информации и времени, а также метаболизма и времени.
1.2. Информация и биологическое время
Известный тезис Аристотеля «Время является мерой движения (изменения)» (Аристотель, 1937) применительно к живым организмам может быть переформулирован как «время есть мера изменения информации» В пользу этого тезиса свидетельствует ряд исследований, в частности, работа R.E. Hicks и соавторов (Hicks et al., 1976), в которой авторы рассматривают проспективные и ретроспективные суждения о времени как функцию от объема полученной информации. О схожей закономерности, связывающей время и информацию в биосистемах писал М. И. Сетров (1974).
Проанализируем в этом аспекте два основные определения: информация как сообщение/сигнал о чем-либо и информация как негэнтропия (Шредингер, 2002; Бриллюэн, 2006). Другие определения условно можно считать по смыслу близкими первому или второму из них, дополняющими характеристику свойств/функций информации. Многочисленные данные из различных областей биологии свидетельствуют о справедливости для биосистем обоих определений, а также об одновременном взаимосвязанном генезе информации и эндогенного времени на разных структурных уровнях организма (Чернышева, 2011). Рассмотрим эти положения более конкретно.
1.2.1. Информация как сигнал/сообщение
Известно, что рецепторы живых организмов как специфические сенсорные структуры воспринимают и усиливают экзо- или эндогенные воздействия определенной энергетической природы, а также передают сигнал о них далее, в нервные центры. Так, зрительные рецепторы активируются энергией света, тогда как обонятельные, вкусовые и хеморецепторы сосудов и внутренних органов – энергией химических взаимодействий рецепторов с одорантами, нутриентами или продуктами обмена веществ. Разнообразные рецепторы опорно-двигательной системы, рецепторы прикосновения и давления кожи, барорецепторы сосудов, а также слуховые и гравитационные рецепторы воспринимают воздействия факторов, сопряженных с механической энергией. В рецепторных нервных окончаниях воздействие определенной энергетической природы приводит к возникновению рецепторного и, затем, генераторного потенциала, что отражает генез информации о воздействии. Ее внутриклеточным кодом являются кальциевые спайки, распространяющиеся по внутренним структурам дендрита (Sj"ostr"om et al., 2008, и др.) к соме и, затем, к аксону сенсорного нейрона. Возникающие под его влиянием в начальном сегменте аксона потенциалы действия (спайки или импульсы) отражают усиление, кодирование и передачу информации другим клеткам. Потенциал действия возникает как изменение мембранного потенциала (электрического сигнала) в результате трансмембранного движения ионов натрия и/или кальция, а также калия и хлора через соответствующие ионные каналы. Для передачи информационного сигнала следующему нейрону или иной клетке-эффектору путем выделения определенного химического медиатора важно, чтобы последовательность потенциалов действия включала более двух спайков, следующих с определенной частотой. Экспериментально доказано, что при разной частоте импульсов аксон может выделять разные комплексы медиаторов и ко-медиаторов. Это свидетельствует об электро-хемо-частотной (или – временн'oй) природе первичного кода информации о воздействии. Таким образом, воздействия разной энергетической природы описываются универсальным электро-хемо-временным «языком». При этом генез информации взаимосвязан с возникновением не только временн'oго компонента кода, но и совокупности процессов, отраженных в генерации потенциалов, кодировании, усилении и передаче сигнала от мембранных структур к внутриклеточным, а также от клетки к клетке. Каждый из них обладает набором темпоральных параметров (латентностью, скоростью, длительностью), что позволяет называть эти процессы временными и считать их компонентами эндогенного (биологического) времени, генерируемого в структурах организма.
На уровне группы нейронов в нервных центрах и сетях обработка и передача информации о каком-либо воздействии отражается, прежде всего, во временн'oй перестройке паттернов множественной импульсной активности, на уровне головного мозга – в изменениях преобладающих частотных диапазонов волн ЭЭГ, сохраняя на каждом из уровней временн'yю компоненту кода информации.
На уровне клетки (не только в нервной ткани) воздействия давления или химических веществ через соответствующие рецепторы мембраны изменяют мембранный потенциал и электромагнитное поле клетки, вызывают в ней движение молекул и органелл. Параллельно запускается каскад внутриклеточных химических реакций, специфика и временные параметры которых также кодируют информацию о воздействии и определяют особенности ответной реакции структур клетки. Например, частота и длительность ритмов выделения ионов кальция из внутриклеточных депо может кодировать тип воздействующего на рецепторы мембраны клетки медиатора или гормона (например, пептида, моноамина или ацетилхолина) и его концентрацию (Bhalla, Iyengar, 1999).
Последующие исследования показали, что в кортикальных нейронах мыши информационный «кальциевый» код активирует в мембране митохондрий Са-зависимые транспортеры для аминокислот Asp/Glut (ARALAP/AGC1) и для АТФ-Mg/Pi (SCaMC-3), что является необходимым условием синтеза АТФ (Llorente-Folch et al., 2013). Следовательно, кальциевый код информации на уровне митохондрий обусловливает уровень энергетического потенциала клетки (для выполнения работ ее «молекулярных машин»).
Известно, что разные вещества (лиганды) как информационно значимые сигналы могут связываться с рецепторами мембраны и/или ядра, оказывая соответственно быстрые внегеномные или же более медленные эффекты, запускаемые на уровне генома, отражая двух-уровневые темпорально различные воздействия лиганда на клетку. Например, гормон эстрадиол через метаботропный рецептор мембраны оказывает быстрые внегеномные эффекты на многие ключевые ферменты метаболизма в цитоплазме, а через ядерный рецептор – отставленное, длительное воздействие на гены других белков (Liu et al., 2002; Qiu et al., 2006, и др.), что пролонгирует суммарную длительность эффектов гормона. При этом также увеличивается разнообразие запускаемых временных процессов, вовлеченных в генерацию эндогенного времени на разных уровнях временной структуры организма, от метаболизма до поведения.
Следовательно, информация как сигнал/сообщение о воздействии возникает в клетке или более сложной рецепторной структуре-мишени (например, в сетчатке глаза), кодируется при участии времени и генерирует временные процессы, изменяя эндогенное время организма.
1.2.2. Информация как негэнтропия
В соответствии с принципом доминанты А. А. Ухтомского (1966) в центральной нервной системе передача, обработка и фиксация (или процессинг) доминирующей информации сопровождается полной или частичной селекцией субдоминантной посредством изменения соотношения процессов активации и торможения в соответствующих структурах. Это приводит к концентрации внимания, упорядочиванию каналов обработки и пула информации, вводимой в память, снижает уровень информационного шума («снимает неопределенность») и энергетические затраты на процессинг информации. Как следствие, уменьшается и доля энергии, диссипатирующей при этом в тепловую, частично используемой для поддержания активности ключевых ферментов метаболизма и температуры тела. Согласно принципу Ле Шателье, с ростом интенсивности метаболизма (основного источника свободной энергии в организме) увеличивается уровень энтропии. Следовательно, снижение интенсивности метаболизма в ходе процессинга информации как сообщения/сигнала о воздействии на организм, орган или клетку предполагает необходимость снижения при этом уровня обобщенной энтропии/хаоса. Это, в свою очередь, соответствует определению Л. Н. Бриллюэном информации как негэнтропии (Бриллюэн, 2006).