Шрифт:
Чтобы узнать, сможет ли носовой конус выстоять при возвращении аппарата в атмосферу, надо знать общее количество тепла, которое передается корпусу из пограничного слоя, а также скорость, с ка. кой происходит эта передача. Все известные на Земле вещества имеют предел теплоемкости и скорости передачи тепла, поэтому единственный способ улучшить теплозащиту, казалось бы, заключается в утолщении стенок носовой части.
Чем более тупую форму имеет носок, тем больше времени потребуется ракете для возвращения на Землю. В этом случае ракета получит тепла больше, однако поступать оно будет с меньшей скоростью. При тупом носке количество тепла, подводимого на каждый квадратный сантиметр, уменьшается, так как тепло распределяется на большей площади.
Тупоносый летательный аппарат при входе в плотные слои воздуха очень резко снижает свою скорость, отчего возникает недопустимо высокое торможение. Если в кабину такой ракеты поместить человека, его прижмет с огромной силой к передней стенке кабины и буквально раздавит. Чтобы избежать резкого торможения, на хвостовую часть летательного аппарата можно надеть железную «юбку» (рис. 8). Эта «юбка» в верхних слоях атмосферы раскрыта полностью, а при подходе к Земле, по мере увеличения плотности воздуха, ширина «юбки» начнет постепенно уменьшаться. В результате лобовое сопротивление ракеты будет изменяться плавно, а величина торможения останется в допустимых пределах.
Итак, предотвратить сгорание космического корабля в момент, когда он пронзает атмосферу, можно подбором соответствующей формы носовой части из материала, хорошо отводящего тепло. Лучший ли это метод защиты спутника от сгорания? Сейчас мы это выясним.
«Жертвенный» слой
Оказывается, есть и другой способ предохранить космическое тело от сгорания. Поверхность спутника можно покрыть таким веществом, которою для своего плавления, а тем более для испарения требует очень много тепла. Слой такого вещества хотя и обгорит при снижении спутника, но сам корпус останется невредимым. Такой защитный слой иногда называют «жертвенным» [17].
Мысль покрывать носовую часть жертвенным слоем родилась у ученых при исследовании железных и каменных глыб, прилетевших из космоса на Землю. Такие «гости из космоса» называются метеоритами. Исследуя их, ученые обнаружили, что поверхность их обычно оплавлена, а внутреннее строение остается без изменения.
Для жертвенного слоя подходят два типа материалов: вещества, способные поглощать очень много тепла в момент перехода из твердого состояния в жидкое, а также вещества, поглощающие очень много тепла при переходе из твердого состояния прямо в газообразное. Процесс испарения твердых тел называют возгонкой или сублимацией.
Конечно, для жертвенного слоя целесообразнее брать вещества с наибольшей величиной теплопоглощения, такие как углерод, окись магния, бериллий. Эти вещества самые теплоемкие в твердом состоянии. Интересно и то, что углерод из твердого состояния переходит сразу в газообразное, не расплавляясь, то есть он возгоняется. При этом он поглощает в десятки раз больше тепла, чем, например, платина, молибден, хром — очень тугоплавкие металлы.
Носовая часть ракеты, покрытая жертвенным слоем, должна оплавляться равномерно, сохраняя нужную аэродинамическую форму. Материалы для оплавляющихся головок должны, кроме того, иметь низкую скорость передачи тепла. В этом случае корпус спутника будет оставаться еще холодным и поэтому достаточно прочным даже тогда, когда защитный слой начнет уже плавиться.
Еще более перспективным способом защиты космического аппарата от сгорания считается покрытие его носовой части возгоняющимся веществом. На превращение твердого тела сразу в газ расходуется огромное количество тепла, поступающего из пограничного слоя к обшивке. Это тепло вместе с газом отводится от корабля в пространство. Вот почему в период сверхбыстрого разогрева носовой части летательного аппарата его внутренние жизненно важные узлы будут защищены от сгорания.
Ученые [17] рассмотрели условия, при которых возможен вход в атмосферу спутника, идущего на высоте 160 км со скоростью 6,4 км/сек (рис. 9). Для упрощения расчетов они допустили, что траектория спуска перпендикулярна поверхности Земли. При этом предполагалось, что к моменту достижения земной поверхности вся энергия спутника, как кинетическая, так и потенциальная, превратится в тепло. Учитывалось и то, что одна половина тепла поглощается стенками спутника, а другая рассеивается в атмосфере.
Расчет показал, что на каждый килограмм веса спутника выделяется около 5500 килокалорий тепла. При весе спутника 450 кг общее количество выделившегося тепла составит около двух с половиной миллионов килокалорий.
Сколько потребуется возгоняющего вещества, например окиси бериллия, чтобы поглотить все это тепло? Один килограмм такого вещества поглощает при испарении 5870 килокалорий тепла. Для поглощения же 1250000 килокалорий тепла, которое приходится на спутник весом 450 кг, необходимо испарить 210 кг окиси бериллия.
Несмотря на то что температура поверхности корпуса спутника в момент испарения окиси бериллия равна 250 °C, этот разогрев не опасен для конструкции и оборудования спутника, поскольку воздействие тепла кратковременно, а теплопроводность окиси бериллия невысока. При высоких температурах возгоняются не только бериллий и его окись, но и такие металлы, как тантал, вольфрам, молибден.
Вместо окиси бериллия и других дефицитных материалов в качестве жертвенного слоя могут быть использованы пластмассы, которые имеют низкую теплопроводность, отличаются гибкостью и способны поглощать при испарении огромное количество тепла.