Шрифт:
Подобные вопросы еще сравнительно недавно если и озвучивались, то получали единый, можно сказать, хрестоматийный ответ: это лежит за гранью науки. Тут приводилось понятие космологической сингулярности стянутой в точку материи Вселенной с бесконечными (правильнее сказать – стремящимися к бесконечности) плотностями вещества и энергии. Стена космологической сингулярности долго закрывала сущность того, что же и почему взорвалось. Конечно, долго такое положение в космологии продолжаться не могло, и в шестидесятых годах прошлого века стали появляться «запредельные» сценарии рождения нашего мира из ничего.
Естественно, бесконечность – понятие математическое, и в нашем случае оно просто обозначает рамки применимости тех или иных моделей развития Вселенной, которые ученые называют космологическими сценариями. Что происходит в области сингулярности (да и существует ли она в реальности?), не знает никто, но логически очевидно, что там становятся неприменимы многие законы привычного для нас мира, описываемые теорией относительности и квантовой физикой.
Одними из первых свои версии предложили академики Яков Зельдович и Андрей Сахаров. По мысли этих выдающихся российских физиков, прежде всего надо было выяснить, не противоречит ли само предположение об образовании Вселенной «из ничего» основным законам сохранения, которые являются фундаментом современной физики. Причем нужно учесть, что самый общий закон сохранения материи в самых различных процессах так и формулируют: «из ничего не может получиться ничего». Подобную формулировку академики Зельдович и Сахаров отвергали «с порога», считая ее наивной и ненаучной, поскольку есть закон сохранения энергии и электрического заряда.
Прежде всего рассмотрим закон сохранения электрического заряда. Тут вроде бы все ясно и достаточно очевидно – запрета на рождение электронейтральной Вселенной пока еще никто не выявил, и наш мир вполне может содержать равное количество как положительных, так и отрицательных зарядов. Почему мы склоняемся именно к такой структуре мироздания? Тут можно рассуждать от противного: ведь если бы положительное и отрицательное электричество не компенсировали друг друга, то вокруг постоянно бушевал бы электрический шторм – возникали бы и тут же гасли сильнейшие электрические поля, разрушая однородность нашего мира.
Итак, Вселенная, судя по всему, строго нейтральна и вполне могла возникнуть «из ничего», не противореча закону сохранения электрического заряда.
Теперь следует проанализировать выполнение закона сохранения барионного заряда. Ядро любого атома состоит из равного количества протонов и нейтронов, поэтому для стабильности материи на атомарном уровне требуется постоянство суммы этих частиц. Ведь даже радиоактивность атомных ядер проявляет себя либо как перегруппировка нейтронов с протонами, либо как взаимные превращения нейтронов в протоны, и наоборот. Если бы закон сохранения барионного заряда не выполнялся, то протон, одна из основных ядерных частиц, как в свободном, так и в связанном ядерном состоянии был бы нестабильным, периодически распадаясь с выделением громадной энергии. Поскольку этого еще никто не наблюдал, то и вся Вселенная, возникшая «из ничего», должна иметь нулевой барионный заряд.
Рассмотрим закон сохранения энергии для Вселенной в целом? Напомним, что энергия покоящихся частиц эквивалентна ее массам – следовательно, сохранение энергии покоя эквивалентно сохранению массы. Мы уже знаем, что общая теория относительности связывает геометрию пространства и тяготение. При этом релятивистская теория гравитации Эйнштейна делает вывод: в замкнутом мире отрицательная энергия гравитации должна в точности компенсировать положительную энергию тяготеющей материи. Таким образом энергия «ничего» равна нулю, как и энергия замкнутой Вселенной. Поэтому закон сохранения энергии не должен противоречить образованию «из ничего» геометрически замкнутого мироздания. Вот так общая теория относительности устраняет последнее препятствие на пути возникновения нашего мира «из ничего».
Но что же в действительности вызвало Большой взрыв? Для ответа понадобилось полвека исследований, в результате которых выстроилась одна из самых удивительных в современной космологии гипотез рождения мироздания. Трудно даже перечислить всех физиков, астрономов и космологов, принесших свои оригинальные идеи на алтарь науки. Больше всего их было сформулировано в работах выдающихся физиков прошлого и нынешнего столетия: Джона Уилера, Стивена Хокинга, Якова Зельдовича, Андрея Сахарова и Игоря Новикова. Их суть сводится к тому, что наша Вселенная является результатом развития гигантского искажения некоего суперпространства.
Постепенно «стандартную» теорию возникновения нашего мира сменила оригинальная разработка видных российских физиков Эраста Глинера, Алексея Старобинского, Давида Киржница и Андрея Линде. В этом космологическом сценарии описывалось рождение Вселенной в процессе сверхбыстрого расширения: инфляции. Основой для описания этого явления послужили общая теория относительности Эйнштейна и хорошо изученный раздел теоретической физики – квантовая теория поля.
Еще совсем недавно у физиков существовало своеобразное табу на исследование пространства и времени за границей рождения Вселенной. Сейчас уже возникло довольно много теорий, описывающих, как могло выглядеть то очень таинственное нечто, в чем и возник наш мир. Во-первых, это, конечно же, должно быть не обычное состояние иного пространства – времени. Ведь в нашей повседневной реальности вокруг не рождаются новые Вселенные! И даже если бы это происходило, мы просто перенесли бы вопросы рождения мироздания в эту старую Вселенную, а потом в еще более старую, и так далее.
В математике такой процесс хождения по кругу одних и тех же понятий носит название «дурная бесконечность» и он по определению не способен дать чего-либо нового познанию. Поэтому физики и рассматривают среду, где возник наш мир, как суперпространство со многими измерениями.
Для наглядности достаточно взять лист бумаги и представить, что на нем находится наше мироздание нулевой толщины, тогда окружающее лист пространство и будет моделью исходного суперпространства.
И тут возникает очень любопытная логическая головоломка. Ведь если геометрического центра Большого взрыва не существует, и он происходил (а по некоторым теориям и происходит «повсюду»), то где-то вокруг нас и спрятано суперпространство. Первые подозрения, как всегда в подобных случаях, вызывают так называемые сугубо квантовые объекты.