Шрифт:
Н. — Еще раз я не подумал, как следует! Ты в самом деле прав. Но это чрезвычайно симпатично. Хотя частота делится на 4, мультивибратор запускается каждым вторым поступающим на вход импульсом, что несомненно повышает стабильность его работы.
Л. — Разумеется, именно поэтому я только что сказал тебе о трудности делить на 13 и тем более на 15 или на 17… А вот разделить на 14 было бы значительно легче, чем на 13.
Н. — Вот о чем я сейчас подумал: если потребовалось бы разделить частоту на 2, работа была выполнена бы почти безукоризненно, так как мультивибратор срабатывал бы от каждого поступающего на вход импульса.
Л. — Ты совершенно прав, Незнайкин. Но сейчас я расскажу тебе о совершенно безупречном способе деления на 2, который никак не зависит от частоты. Я познакомлю тебя с новым устройством — с триггером с двумя устойчивыми состояниями, носящим еще название триггера Экклеса — Джордана. Вот тебе схема этого устройства (рис. 82).
Рис. 82. Схема триггера с двумя устойчивыми состояниями; диоды пропускают синхронизирующий импульс на тот из транзисторов, который находится в состоянии насыщения.
Н. — Ой, ой! Какая она сложная!
Л. — Может быть и сложная, но разобраться в ней совсем нетрудно. Здесь ты увидишь некоторую аналогию с мультивибратором (см. рис. 78). Когда один из транзисторов пропускает ток, он напряжением своего коллектора воздействует на базу другого транзистора. В отличие от мультивибратора здесь мы имеем прямую связь между каждым коллектором и базой противоположного транзистора. Так, например, если ток пропускает транзистор Т1 (если возможно в состоянии насыщения), потенциал его коллектора очень низкий. С помощью делителя напряжения R3 — R4 он придает потенциалу базы Т2 небольшую отрицательную величину, что надежно запирает транзистор Т2. Но когда запертым оказывается транзистор Т1, потенциал его коллектора близок к +Е и делитель из резисторов R3 — R4 будет стремиться создать на базе Т2 положительное напряжение. Как только база станет положительной, ток базы подрежет сверху напряжение, подводимое к ней через резисторы R3 и R4.
Н. — Уф, хотя я и очень внимательно следил за твоим рассказом, числовой пример принес бы мне немалую пользу.
Л. — Согласен, я полагаю, что ты будешь доволен, если посмотришь на рис. 82; там в скобках я указал напряжение питания +Е, равное 12 в, напряжение смещения — Uc (в нашем случае — 6 в), а также номиналы резисторов. Предположим, что ток пропускает транзистор T1, находящийся в состоянии насыщения. Отсюда следует, что потенциал его коллектора упал почти до нуля, а ток коллектора близок к 4 ма, потому что питание на этот коллектор подается от источника с напряжением 12 в через резистор R1 с сопротивлением 3 ком. Два равные по сопротивлению резистора R3 и R4 создают на базе Т2 потенциал, близкий к —3 в, т. е. транзистор Т2 надежно заперт.
А теперь предположим, что заперт транзистор T1. Тогда потенциал его коллектора близок к +12 в, делитель из резисторов R3 — R4 стремится повысить потенциал базы транзистора Т2до +3 в. Само собой разумеется, что напряжение на этой базе достигнет лишь +0,3 в (обычное значение напряжения база — коллектор в нормально проводящем германиевом триоде). В этих условиях легко рассчитать, какой ток поступает на эту базу через резисторы R1 и R3 общим сопротивлением 23 ком; ток имеет величину: 12 в: 23 000 ом = 0,00052 а или 0,52 ма. В то же время через резистор R4 течет ток, равный 6 в: 20 000 ом = 0,0003 а или 0,3 ма. База же получает разность этих токов или 0,52 ма — 0,3 ма = 0,22 Если коэффициент усиления транзистора по току превышает 20, можно с уверенностью сказать, что мы довели транзистор до состояния насыщения, ибо максимальный ток его коллектора равен 4 ма.
Н. — Хорошо, теперь я действительно вижу, что когда один из транзисторов твоей схемы пропускает ток, он запирает другой и, наоборот, запертый транзистор приводит другой в состояние насыщения. Но как узнать, какой из транзисторов будет заперт и какой будет находиться в состоянии насыщения?
Л. — А на этот вопрос, дорогой Незнайкин, я не могу ответить с желаемой тобой определенностью. Возможно, что запертым будет транзистор Т1, а Т2 будет в состоянии насыщения, но одинаково возможен и случай, что в состоянии насыщения окажется Т1 а Т2 будет заперт.
Н. Значит, твоя схема сама не знает, чего она хочет!
Л. — Не вдаваясь в вопросы психологического анализа, я просто скажу тебе, что рассматриваемая схема имеет два устойчивых состояния или, как говорят, она бистабильна. Тебе уж доводилось встречаться с такими схемами и, в частности, с триггером Шмитта (см. рис. 61), у которого напряжение базы транзистора Т1 находилось между двумя порогами.
Н. — Так, значит, эта схема может некоторое время провести с запертым Т1 и насыщенным Т2 и наоборот.
Л. — Согласен с тобой, но с одной оговоркой — я не стал бы говорить «некоторое время». Оказавшись в каком-то определенном положении, схема (рис. 82) может бесконечно долго оставаться в этом положении, пока мы не изменим ее состояния.
Н. — Но как ты «изменишь состояние» схемы?
Л. — Здесь на сцену выступают диоды Д1 и Д2. Предположим, что схема находится в таком состоянии, когда транзистор Т1 заперт, а Т2 насыщен. Как мы видим, в этих условиях на катоды диодов через резисторы R7 и R8 поданы следующие потенциалы: у диода Д1 почти + 12 в, а у диода Д2 почти нуль. Подадим в точку А отрицательный импульс; через конденсаторы С3 и С4 этот импульс одновременно будет приложен к катодам обоих диодов. Но так как катод диода Д1 имеет потенциал +12 в, а его анод — отрицательный потенциал (транзистор Т1 заперт), потребовался бы импульс больше 12 в, чтобы сделать диод проводящим. А у диода Д2 потенциал катода равен (или почти равен) нулю, а потенциал его анода также близок к нулю или имеет очень небольшую положительную величину (мы говорили о 0,2 или 0,3 в). Поэтому импульс будет передан только диодом Д2. Отрицательный импульс, попадая на базу транзистора Т2, запрет его. Соответствующее повышение напряжения на его коллекторе передается на базу транзистора Т1 через делитель из резисторов R5 — R6 и особенно через конденсатор С1, хорошо передающий крутые фронты, и отопрет транзистор Т1. Таким образом, завершится переход системы из одного состояния в другое.