Шрифт:
К тому времени Млечный Путь соединится со своими ближайшими соседями, создав одну огромную — гигантскую! — галактику в буквальном смысле в настоящей космической глуши. В нашем ночном небе останется сколько-то звезд, мертвых еще функционирующих, и больше ничего. Астрофизикам будущего предстоит жить в весьма жестоком мире. Вокруг не будет ни одной галактики, которая помогла бы им отследить факт расширения Вселенной, и они, как и Эйнштейн, ошибочно предположат, что живут в статической Вселенной. Космологическая постоянная и ее темная энергия доведут Вселенную до состояния, в котором их нельзя будет не только измерить, но и в принципе вообразить.
Рекомендуем получать удовольствие от космологии, пока это еще возможно.
Глава 6
Одна Вселенная или множество?
В начале 1998 года мир космологии потрясло открытие, что мы живем в мире ускорения, в котором Вселенная не только постоянно расширяется, но и делает это все быстрее и быстрее. Тогда были объявлены первые результаты наблюдений за сверхновыми звездами, которые и помогли ученым прийти к заключению о расширении Вселенной. Сегодня, когда эта идея также окончательно заручилась поддержкой исследователей реликтового излучения (а у космологов было достаточно лет для того, чтобы пропустить через себя мысль о постоянно ускоряющемся космическом расширении), возникают два серьезных вопроса, и в поиске ответов на них космологи проводят дни и ночи: почему скорость расширения Вселенной растет, почему у этого ускорения именно такое значение и как оно характеризует Вселенную?
Простой ответ на первый вопрос перекладывает всю ответственность за ускорение расширения Вселенной на сам факт существования темной энергии же, что равнозначно, на наличие ненулевой космологической постоянной. Сама степень ускорения напрямую зависит от количества темной энергии на каждый кубический сантиметр пустого пространства: чем больше энергии, тем быстрее ускорение. Так, если бы ученые смогли объяснить, откуда берется эта самая темная энергия и почему сегодня во Вселенной ее именно столько, сколько есть, они могли бы с чистой совестью заявить, что разгадали фундаментальную загадку Вселенной: происхождение той энергии в пустом пространстве, которая неуклонно провоцирует космос на дальнейшее и все более стремительное расширение — вперед в будущее, в котором нас ждет поистине необъятное космическое пространство, не менее гигантские запасы темной энергии в нем и почти никакого вещества на один кубический световой год.
Откуда берется и что представляет собой темная энергия? Нащупать ответ космологи могут в глубинных пластах своих знаний о физике частиц: темная энергия — это продукт каких-то событий, происходящих в пустом пространстве (если не терять надежды на то, что квантовая теория достоверно описывает суть вещества и энергии). Вся физика частиц основана на данной теории, состоятельность которой столь многократно и очень точно была подтверждена в микроскопических условиях, что почти все физики не видят повода сомневаться в ней. Неотъемлемая часть квантовой теории подразумевает, что так называемое пустое пространство на самом деле гудит и дрожит от «виртуальных частиц», которые появляются в нем и исчезают быстрее, чем мы успеваем их заметить, однако позволяют нам отследить эффект своего существования (темную энергию). Собственно, возникает она в результате этого постоянного мельтешения — появления и исчезновения — виртуальных частиц, которое мы называем квантовыми флуктуациями вакуума (это специально для тех, кому нравится звонкая терминология физиков, остальные могут использовать слово «колебания»). Далее исследователи частиц могут без особых трудностей вычислить точное количество энергии, заполняющей каждый кубический сантиметр вакуума. Непосредственное применение квантовой теории к так называемому вакууму напрямую предполагает, что такие квантовые колебания должны производить темную энергию. Со стороны эта история звучит весьма непринужденно, и возникает резонный вопрос: почему же космологам понадобилось так много времени на то, чтобы обнаружить существование этой энергии?
К сожалению, в силу особенностей реального расклада вещей нам следует иначе сформулировать вопрос: как могли физики, изучающие частицы, так радикально ошибиться? Подсчеты количества темной энергии на каждый кубический сантиметр вакуума указывают на число примерно в 10120 раз большее, чем значение, экспериментально найденное космологами в процессе наблюдения за сверхновыми звездами и реликтовым излучением. В абстрактных астрономических ситуациях расчеты, которые оказываются приблизительно верными, демонстрируя ошибочность в десять или менее раз, зачастую воспринимаются как «временно удовлетворительные». Однако ошибку в 10120 раз под диван не спрячешь, даже если вы неисправимый оптимист в огромных очках с толстыми розовыми стеклами. Если бы в реальном вакууме темной энергии было столько, сколько следует из квантовых законов физики, Вселенная уже давно бы распухла до таких размеров, которых нам с вами никогда даже близко не вообразить, причем крошечной доли секунды хватило бы на то, чтобы разнести вещество по всему космосу в невероятно разреженном виде. Теория и наблюдения единодушны в своих выводах о том, что в пустом пространстве содержится темная энергия, однако в вопросах того, сколько именно такой энергии там можно обнаружить, они расходятся в миллиард в десятой степени раз. Чтобы наглядно проиллюстрировать это колоссальное расхождение, не получается придумать ни одного «земного» примера, да и космический тоже не приходит в голову. Расстояние от Земли до самой далекой известной нам галактики превышает размер одного протона в 1040 раз. Даже это гигантское число — всего лишь кубический корень из того, во сколько раз расходятся теория и практика относительно значения нашей космологической постоянной.
Специалисты по физике частиц и космологи давно знают, что квантовая теория задает неприемлемо высокое значение объема мировой темной энергии. Но в те дни, когда считалось, что значение космологической постоянной равно нулю, они надеялись обнаружить какое-либо еще объяснение своим наблюдениям — такое, которое, по сути, свело бы на нет сам вопрос к устройству Вселенной с помощью взаимного исключения положительных и отрицательных величин теории. Подобное взаимоисключение когда-то решило проблему того, каким количеством энергии виртуальные частицы наделяют обычные — видимые нам — частицы. Теперь же, когда мы знаем, что космологическая постоянная не равна нулю, надежды на то, что подобное решение методом «взаимоисключения» найдется, довольно призрачны. Однако, если такое решение существует, оно каким-то образом должно будет обесценить практически все те теоретические знания, которыми мы обладаем на сегодняшний день. Сейчас, из-за отсутствия объяснения размера космологической постоянной, ученым остается лишь продолжать плотное сотрудничество в областях космологии и физики частиц, стремясь найти способ привести в соответствие теорию о том, как в космосе рождается темная энергия с ее невероятно высокой концентрацией из расчета на один кубический сантиметр вакуума.
Светила современной физики частиц и космологии тратят немало сил на то, чтобы объяснить значение космологической постоянной — и безрезультатно. Отсюда и жаркий гнев бессилия в рядах ученых-теоретиков, не в последнюю очередь потому, что тот, кто сможет объяснить, как природа смогла создать именно такое космическое пространство, каким мы его наблюдаем, получит и Нобелевскую премию, и невообразимую радость открытия и научного прорыва. Но объяснение требуется еще многим вещам, и одна из них имеет самое прямое отношение к нашей теме обсуждения: почему количество темной энергии, выраженное в ее массовом эквиваленте, примерно равно количеству энергии, производимой всем веществом во Вселенной?
Этот вопрос можно задать и иллюстративно, с помощью двух , представляющих собой плотность вещества и плотность массового эквивалента темной энергии: почему значения и приблизительно равны? Почему одно из них не больше другого в разы? В первый миллиард лет после Большого взрыва была практически равна единице, в то время как — нулю. В те далекие времена сначала была в миллионы, затем в тысячи и потом уже в сотни раз больше . Сегодня же, когда = 0,27 и = 0,73, эти два значения можно считать примерно равными друг другу, хотя и явно выше. В далеком будущем, более 50 миллиардов лет спустя, будет сначала в сотни, потом в тысячи и даже в миллионы, а потом и в миллиарды раз больше . Только в течение периода космической истории примерно от 3 до 50 миллиардов лет после Большого взрыва эти два значения более или менее соответствуют друг другу.