Шрифт:
В экспериментах на лягушках использовали как ультразвуковые, так и звуковые стимулы. Регистрировали электрическую активность, вызванную стимулами в слуховой зоне среднего мозга. Оказалось, что можно подобрать звуковые и ультразвуковые стимулы таким образом, что они при околопороговых интенсивностях вызывали сходные электрические ответы. При увеличении интенсивности ответы на ультразвук менялись по сравнению с ответами на звук. Уменьшался скрытый период, т. е. время от начала предъявления стимула до появления электрического ответного сигнала; круче возрастала амплитуда сигнала, а последующее ее уменьшение становилось более пологим. Особенно отчетливо различия выступали при интенсивности звуковых и ультразвуковых стимулов выше 35—40 дБ над порогом обнаружения ответной реакции.
Различия в характере ответных электрических реакций на звук и ультразвук дали основание предполагать, что при небольших интенсивностях звук и ультразвук активируют преимущественно рецепторный аппарат. С увеличением интенсивности ультразвук начинает активировать проводниковые структуры, в частности волокна слухового нерва. Исследования с применением гистохимических методов окраски слуховых рецепторных клеток и волокон слухового нерва в сочетании с электрофизиологическими данными подтвердили, что при интенсивностях до 35—40 дБ над порогом действие звука и ультразвука сходно. При больших интенсивностях ультразвука рецепторные клетки отвечают признаками утомления, а электрический ответ возникает преимущественно в результате активации ультразвуком волокон слухового нерва. Активирующее действие ультразвука на волокна подтвердилось в экспериментах с разрушением рецепторного аппарата. В этих случаях электрические ответы из слуховых областей среднего мозга регистрировались при интенсивности ультразвука около 40 дБ и выше над порогом ответной реакции функционирующего рецепторного аппарата и были аналогичны уже описанным ответам, отличавшимся от реакции на звук.
Как уже указывалось, наблюдения на животных имеют аналогии в клинико-физиологических исследованиях. Известно, что у некоторых людей глухота вызвана поражением рецепторного аппарата. Таким людям не помогает лекарственное и оперативное лечение. Медицина пока лишена возможностей восстанавливать рецепторы. Не помогают также современные слуховые аппараты, являющиеся по существу миниатюрными усилителями звука. И это вполне понятно: как ни усиливай звук, человек все равно не услышит его, если не имеет соответствующего приемника — рецепторного аппарата. В то же время установлено, что у большинства таких людей в какой-то степени сохранена функция волокон слухового нерва. Начиная с 1957 г. за рубежом предпринимаются попытки активировать волокна электрическим током с помощью электродов, вводимых в слуховой нерв или в ушной лабиринт. Попытки бывают успешными: под действием тока у человека возникают слуховые ощущения. Применяя различные электрические сигналы, подаваемые через электроды, удается ранее глухим людям вводить слуховую информацию. После специального обучения некоторые из них оказываются способными воспринимать достаточно сложную информацию, в том числе музыку и речь.
Если ушной лабиринт человека из такого контингента глухих подвергнуть действию фокусированного ультразвука, человек также может услышать. Это — одно из подтверждений действия ультразвука на волокна слухового нерва. Как и в экспериментах на животных с разрушенным рецепторным аппаратом, пороги слуховых ощущений, вызванных ультразвуком, повышены по сравнению с порогами здоровых людей, причем на те же 35—40 дБ. Сходство проявляется и в ограничении динамического диапазона: слуховые ощущения глухого человека и электрические реакции из слуховых центров среднего мозга у животных с разрушенным рецепторным аппаратом проявляются в диапазоне всего 10—15 дБ. При дальнейшем усилении стимуляции животных сначала прекращается увеличение, а затем возникает уменьшение амплитуды ответа, появляется опасность повреждающего действия ультразвука, о чем свидетельствуют морфологические исследования. У человека при соответствующих интенсивностях стимуляции перестает увеличиваться громкость, а в месте контакта мешка с водой, в которую погружен излучатель, и кожи возникает ощущение тепла. Тепло, в данном случае побочный феномен, оказалось весьма полезным, так как служит предостережением от слишком сильных ультразвуковых воздействий.
Результаты исследований выдвигают вопрос, можно ли использовать ультразвук для протезирования глухих. Несмотря на получение у некоторых глухих людей слуховых ощущений с помощью ультразвука, положительно ответить сейчас на этот вопрос не представляется возможным. Во-первых, неизвестно, как долго можно пользоваться безопасно ультразвуковыми воздействиями даже небольших интенсивностей; во-вторых, нет еще достаточно портативных приборов, позволяющих осуществлять воздействие. Наконец, надо полагать, что как и при электроимплантационном протезировании, т. е. при стимуляции нервных волокон электрическим током с помощью электродов, введенных в улитку или слуховой нерв, при ультразвуковом воздействии потребуется обучение по индивидуальным программам, составленным в соответствии с функциональными возможностями сохранившихся нервных волокон и особенностями нервной системы человека.
Клинические исследования на больных с разными формами нарушений слуха показали целесообразность использования разных режимов воздействия фокусированным ультразвуком в качестве дополнительных диагностических методов. Диагностика поражений слуха чаще всего складывается из аудиологического и оториноларингологического обследований. Иногда привлекают дополнительные методы: рентгеновский, исследование функции вестибулярного аппарата, лицевого нерва и т. д.
Основу аудиологического обследования составляет тональная аудиометрия. Она преследует цель получить частотно-пороговую характеристику слуха по воздушной и костной проводимости. Слуховые пороги измеряют не во всем диапазоне слышимости, это было бы чрезвычайно трудоемко, а на фиксированных октавных частотах, т. е. последовательно увеличивающихся вдвое от 125 до 8000 Гц. Ухудшение слуха — повышение порогов слуховых ощущений — оценивают в децибелах от порогов нормально слышащих.
Подобно аудиограмме, можно получить частотно-пороговую кривую при действии на улитковый лабиринт фокусированного ультразвука. Для лучшего сопоставления с аудиограммой ультразвук можно модулировать по амплитуде синусоидальными колебаниями аудиометрических частот. Такая кривая незначительно отличается от аудиограммы нормально слышащих людей и значительно — у больных с нарушениями слуха. Отличается она и от аудиограммы этих больных. Для некоторых заболеваний различия весьма типичны и поэтому могут быть использованы в диагностике. Например, фокусированный ультразвук оказался полезным в диагностике отосклероза, заболевания, проявляющегося в ограничении подвижности слуховых косточек, которое сопровождается ухудшением слуха. При отосклерозе слух снижен главным образом по воздушной проводимости, т. е. когда звук распространяется по воздуху и с помощью ограниченно подвижных слуховых косточек. Если механические колебания поступают к рецепторному аппарату с участием костно-тканевой проводимости, слуховые пороги повышаются незначительно. Диагноз обычно ставится с учетом течения заболевания, сведений о состоянии слуха у родителей и родственников, осмотре уха и данных аудиограммы, на которой слуховые пороги по костной проводимости ниже воздушных порогов.
Однако, если раньше бывали воспалительные заболевания уха, повреждающие аппарат звукопроведения, аудиограмма может оказаться очень похожей на полученную при отосклерозе, а изменения барабанной перепонки могут быть очень незначительными или вообще незаметными при осмотре. В таком случае для уточнения диагноза очень полезным оказывается фокусированный ультразвук. На рис. 21 показаны аудиограмма и ультразвуковая частотно-пороговая кривая. Видно, что слуховые пороги при ультразвуковом воздействии не совпадают со слуховыми порогами на звук при воздушном и костном проведении. Кроме того, при некоторых частотах модуляции ультразвука в диапазоне его интенсивностей до 50 дБ относительно порога для нормально слышащих людей определить порог у больных вообще не удается. Это избирательное отсутствие чувствительности к ультразвуку, «провалы» — очень типичный признак в ультразвуковой диагностике отосклероза.