Шрифт:
Вероятно, еще не все такие процессы обнаружены. Скорее всего некоторые из них давно прекратились, так как исчерпались короткоживущие атомы-«родители», но есть и поныне протекающие ядерные процессы, в которых рождаются аргон-36 и аргон-38. Это бета-распад хлора-36 обстрел альфа-частицами (в урановых минералах) серы-33 и хлора-35:
В материи Вселенной аргон представлен еще обильнее, чем на нашей планете. Особенно много его в веществе горячих звезд и планетарных туманностей. Подсчитано, что аргона в космосе больше, чем хлора, фосфора, кальция, калия — элементов, весьма распространенных на Земле.
В космическом аргоне главенствуют изотопы 36Ar и 38Ar, аргона-40 во Вселенной очень мало. На это указывает масс-спектральный анализ аргона из метеоритов. В том же убеждают подсчеты распространенности калия. Оказывается, в космосе калия примерно в 50 тыс. раз меньше, чем аргона, в то время как на Земле их соотношение явно в пользу калия — 660:1. А раз мало калия, то откуда же взяться аргону-40?!
Как добывают аргон
Земная атмосфера содержит 66•1013 т аргона. Этот источник аргона неисчерпаем, тем более что практически весь аргон рано или поздно возвращается в атмосферу, поскольку при использовании он не претерпевает никаких физических или химических изменений. Исключение составляют весьма незначительные количества изотопов аргона, расходуемые на получение в ядерных реакциях новых элементов и изотопов.
Получают аргон как побочный продукт при разделении воздуха на кислород и азот. Обычно используют воздухоразделительные аппараты двукратной ректификации, состоящие из нижней колонны высокого давления (предварительное разделение), верхней колонны низкого давления и промежуточного конденсатора-испарителя. В конечном счете азот отводится сверху, а кислород — из пространства над конденсатором.
Летучесть аргона больше, чем кислорода, но меньше, чем азота. Поэтому аргонную фракцию отбирают в точке, находящейся примерно на трети высоты верхней колонны, и отводят в специальную колонну. Состав аргонной фракции: 10–12% аргона, до 0,5% азота, остальное — кислород. В «аргонной» колонне, присоединенной к основному аппарату, получают аргон с примесью 3–10% кислорода и 3–5% азота. Дальше следует очистка «сырого» аргона от кислорода (химическим путем или адсорбцией) и от азота (ректификацией). В промышленных масштабах ныне получают аргон до 99,99%-ной чистоты. Аргон извлекают также из отходов аммиачного производства — из азота, оставшегося после того, как большую его часть связали водородом.
Аргон хранят и транспортируют в баллонах емкостью 40 л, окрашенных в серый цвет с зеленой полосой и зеленой надписью. Давление в них 150 атм. Более экономична перевозка сжиженного аргона, для чего используют сосуды Дьюара и специальные цистерны.
Искусственные радиоизотопы аргона получены при облучении некоторых стабильных и радиоактивных изотопов (37Cl, 36Ar, 40Ar, 40Ca) протонами и дейтронами, а также при облучении нейтронами продуктов, образовавшихся в ядерных реакторах при распаде урана. Изотопы 37Ar и 41Ar используются как радиоактивные индикаторы: первый — в медицине и фармакологии, второй — при исследовании газовых потоков, эффективности систем вентиляции и в разнообразных научных исследованиях. Но, конечно, не эти применения аргона самые важные.
«Недеятельный» — деятельный
Как самый доступный и относительно дешевый благородный газ аргон стал продуктом массового производства, особенно в последние десятилетия.
Первоначально главным потребителем элемента № 18 была электровакуумная техника. И сейчас подавляющее большинство ламп накаливания (миллиарды штук в год) заполняют смесью аргона (86%) и азота (14%). Переход с чистого азота на эту смесь повысил светоотдачу ламп. Поскольку в аргоне удачно сочетаются значительная плотность с малой теплопроводностью, металл нити накаливания испаряется в таких лампах медленнее, передача тепла от нити к колбе в них меньше. Используется аргон и в современных люминесцентных лампах для облегчения зажигания, лучшей передачи тока и предохранения катодов от разрушения.
Однако в последние десятилетия наибольшая часть получаемого аргона идет не в лампочки, а в металлургию, металлообработку и некоторые смежные с ними отрасли промышленности. В среде аргона ведут процессы, при которых нужно исключить контакт расплавленного металла с кислородом, азотом, углекислотой и влагой воздуха. Аргонная среда используется при горячей обработке титана, тантала, ниобия, бериллия, циркония, гафния, вольфрама, урана, тория, а также щелочных металлов. В атмосфере аргона обрабатывают плутоний, получают некоторые соединения хрома, титана, ванадия и других элементов. Продувка аргоном жидкой стали намного повышает ее качество.
Уже существуют металлургические цехи объемом в несколько тысяч кубометров с атмосферой, состоящей из аргона высокой чистоты. В этих цехах работают в изолирующих костюмах, а дышат подаваемым через шланги воздухом (выдыхаемый воздух отводится также через шланги); запасные дыхательные аппараты закреплены на спинах работающих.
Защитные функции выполняет аргон и при выращивании монокристаллов (полупроводников, сегнетоэлектриков), а также в производстве твердосплавных инструментов. Продувкой аргона через жидкую сталь из нее удаляют газовые включения. Это улучшает свойства металла.