Шрифт:
Вот тут уже явное использование пара как двигательной силы.
Заметим, что на этом принципе воздействия струи на лопатки колеса (принцип активного действия) работают современные паровые двигатели, так называемые активные турбины.
Итак, о силе, которую в известных условиях можно получить от пара, знали давно. Даже пытались использовать эту силу. Но прежде чем был создан настоящий паровой двигатель, удобный тем, что хорошо поддавался управлению и не зависел от рек или от капризных свойств ветра, — прошло много времени. Надо было прежде всего изучить свойства самого пара.
Куда девалась вода из стакана?
Действительно, пока люди имели дело только с энергией воды и ветра, всё казалось простым и понятным: вода течет и увлекает за собой лопатки колеса, ветер надувает паруса или толкает крылья мельницы. Вода — в реке, ветер — в поле…
Но вот человек решил использовать энергию пара. Почему, когда воду нагревают, она закипает и превращается в пар?
Почему этот пар, если его не собрать, быстро рассеется и никакой работы от него не получить? А вот, если его собрать в Геронов шар и оттуда позволить ему вырываться через узкие трубки, — он окажется настолько сильным, что, отталкивая трубки, заставит весь шар вращаться. Или, если пар запереть в небольшом пространстве, как в случае с пушкой Архимеда, и к тому же подогреть, — он станет еще сильнее: дальше, чем любая пружина, пошлет из пушки ядро.
Какими же тайными свойствами обладает этот волшебник-пар? Как можно наилучшим образом овладеть этими свойствами? Изучение свойств пара длилось долгое время, и только к концу прошлого века сложились вполне точные научные представления. Правда, создание парового двигателя шло своим чередом, не ожидая того времени, когда пар будет изучен всесторонне. Как только опытом удавалось найти какое-либо новое свойство, — сразу же оно применялось в новых изобретениях.
Однако совершенный двигатель, работающий паром, стал строиться позднее, уже на основании точных знаний.
Прежде чем продолжить рассказ об интереснейшей истории создания паровой машины, следует напомнить вам основные сведения о паре, которые когда-то никому не были известны и о которых теперь знает каждый школьник седьмого класса.
То, что жидкости, в том числе и вода, испаряются, всякий из вас замечал. Действительно, кто не наблюдал, например, таинственного исчезновения воды из стакана, оставленного летом на окне? Сначала, когда вы были маленькими, вам казалось, что кто-то выпивает эту воду. Но потом, когда вы стали учиться в школе, то поняли, что вода просто улетучивается, то есть испаряется. Почему?
Уже давно люди задумывались над тем, что представляют собой различные вещества, которые окружают нас.
Люди заметили, что каждое вещество можно получить в больших и в малых порциях. Такое вещество, как вода, может наполнять огромные водоемы, но может и в виде маленькой росинки искриться на лепестке цветка. До каких же пределов можно мельчить вещество, не меняя его свойств? Ведь есть же самая мельчайшая частица? Да, такая частица, как выяснили ученые, есть, и назвали они ее молекулой. Молекулы вещества друг к другу притягиваются, друг за друга держатся, но для этого они должны находиться очень близко друг к другу. Однако при очень близком соприкосновении у них возникают и силы отталкивания.
В твердом теле молекулы расположены очень близко друг к другу и, находясь под влиянием сил притяжения и сил отталкивания, совершают небольшие колебательные движения, которые нам, конечно, не заметны.
Но вот давайте твердое тело, например кусок свинца, нагревать — и вы увидите, что в определенный момент он превратится в жидкость, — расплавится. Что же произошло?
Оказывается, когда мы нагревали свинец, мы тем самым заставляли молекулы колебаться всё чаще и чаще и увеличивать размах этих колебаний (вот почему тела при нагревании расширяются). Наконец, при какой-то вполне определенной для каждого вещества температуре молекулы начинают отделяться друг от друга, вновь соединяться в новые группы, опять отделяться, чтобы затем опять соединиться по-новому. Молекулы начинают хаотическое движение внутри массы вещества, и вещество превращается в жидкость. Вода и представляет собой вещество, которое в обычных условиях является жидкостью.
А что, если жидкость — в данном случае воду — тоже нагреть? Ускорится ли движение молекул? Да, ускорится. При этом молекулы начнут так быстро двигаться, что некоторые с размаху вылетят прочь, покидая поверхность и устремляясь в атмосферу. Вот это и есть испарение. Оказывается, если даже не нагревать воду, то испарение всё равно происходит — правда, медленно. Так улетучилась за день вода из стакана, стоявшего на окне. Но если воду нагревать, то, чем выше будет ее температура, тем быстрее пойдет испарение.
Нагревая воду в открытом сосуде и измеряя ее температуру, дойдя до 100 °C, мы заметим, что вода при этом закипела, температура дальше не поднимается, а вверх устремились клубы пара. Началось парообразование: не только от поверхности, но и по всей массе жидкости происходит отрыв молекул, образуются пузыри, которые поднимаются вверх, прорываются через поверхность, и молекулы улетучиваются. Всё тепло, которое мы теперь при нагревании сообщаем воде, пойдет на отрыв молекул, — вот почему температура, как установилась в 100°, так и будет держаться до тех пор, пока не выкипит, то есть не испарится, вся вода. Из жидкого тела вода превратится в газообразное — в пар.