Шрифт:
На уровне живой природы наиболее типичными и легко наблюдаемыми являются механизмы адаптационного типа, а бифуркации возникают лишь в исключительные моменты ее истории. На социальном уровне ситуация радикальным образом изменяется. Более того, говоря об общественных формах движения, мы должны существенным образом изменить ту условную классификацию механизмов развития, которую ввели ранее. В самом деле, развитие любой социальной системы из любого состояния может происходить заведомо не единственным образом даже и тогда, когда система не подвержена действию неизвестных нам сил, случайностям и неопределенностям. Все дело в том, что в процесс развития включается человеческий интеллект. Дальнейшее развертывание этого процесса определяется тем выбором, той ранжировкой функционалов, если пользоваться нашим языком, которую делает человек. А предусмотреть действия людей отнюдь не просто: в одних и тех же условиях два разных человека часто принимают совершенно различные решения. Отсюда и возникает неединственность и неопределенность возможных продолжений процесса развития в каждый момент времени. Другими словами, каждое состояние социальной системы является бифуркационным. Именно это обстоятельство приводит к резкому ускорению всех процессов самоорганизации общества. По мере развития научно-технического прогресса и производительных сил организованные основы общества начинают изменяться во всевозрастающем темпе.
Заметим, что язык оптимизации (т. е. отыскания экстремальных значений некоторых функционалов или функций), с помощью которого мы описали алгоритмы развития на нижних уровнях организации материи, сохраняет свое значение и для социальной реальности. Однако интеллект производит фильтрацию возможных решений, возможных типов компромиссов неизмеримо эффективнее и быстрее, нежели это делает механизм естественного отбора. Активное участие интеллекта в процессах развития позволяет расширить область поиска оптимума. Системы перестают быть рефлексными, т. е. такими, в которых локальный минимум разыскивается по четко регламентированным правилам. Поэтому для описания новых алгоритмов развития, возникших в социальных системах, простого языка оптимизации становится уже недостаточно. Мы вынуждены широко использовать и другие способы описания, принятые в теории исследования операций и системном анализе. В частности, это язык и методы анализа конфликтных ситуаций и многокритериальной оптимизации.
Особое значение приобретает «обобщенный принцип минимума диссипации», область применения которого непрерывно расширяется. На протяжении всей истории человечества стремление завладеть источниками энергии и вещества было одним из важнейших стимулов развития. И вместе с тем оно всегда было причиной конфликтов.
Но по мере развертывания научно-технического прогресса, по мере истощения земных ресурсов все более утверждается новая тенденция – стремление к экономному расходованию этих ресурсов. Возникают, в частности, безотходные технологии. Преимущественное развитие получают производства, требующие небольших затрат энергии и материалов (это прежде всего электроника). На протяжении всей истории человечества темпы развития энергетики опережали темпы развития других отраслей производства. Теперь они начинают выравниваться.
Способность использовать свободную энергию и другие ресурсы планеты практически всегда определяла исход конфликтов между социальными организмами и их организационными структурами, а также отбор таких структур. По-видимому, так будет и в дальнейшем. Поэтому изучение конфликтных ситуаций и принципов отыскания компромиссов приобретает на современном этапе особую важность. Именно в этой сфере знаний может проявиться потенциальная способность человека самостоятельно формировать алгоритмы развития.
5. О принципах минимума диссипации
Обсуждая принципы отбора и механизмы развития, особое внимание я уделил принципу минимума диссипации. Этот вопрос не нов. Проблема «экономии энтропии» как меры разрушения организации и как меры необратимого рассеяния энергии неоднократно была предметом весьма тщательного анализа. Однако я придал ей не совсем обычную трактовку. Поэтому, формулируя те или иные положения, касающиеся принципа минимума диссипации, необходимо показать их связь с теми утверждениями, которые формулировались другими авторами.
Мое утверждение, касающееся процессов, протекающих в мире «косной» материи, было следующим: если множество возможных устойчивых (стабильных) движений или состояний, удовлетворяющих законам сохранения и ограничениям, состоит более чем из одного элемента, т. е. они не выделяют единственного движения или состояния, то заключительный этап отбора, т. е. отбора реализуемых движений или состояний, которые также могут и не быть единственными, определяется минимумом диссипации энергии (или минимумом роста энтропии).
Именно это утверждение я и назвал «принципом минимума диссипации». Оно не является строгим утверждением, подобно принципам механики. Это всего лишь предположение, но достаточно правдоподобное и не противоречащее экспериментальному материалу. Кроме того, оно позволяет получать весьма полезные результаты для практики. Приведем один пример, иллюстрирующий его применение.
Рассмотрим установившееся движение по трубе смеси двух жидкостей разной вязкости, но одинаковой плотности. Коэффициент вязкости смеси этих жидкостей т) будет зависеть от их процентного соотношения. Обозначим через с концентрацию более вязкой жидкости. Рассматриваемое течение моделирует движение суспензии, представляющей собой жидкость со взвешенными в ней частицами, когда их характерный размер очень мал – в десятки раз меньше диаметра трубы. В этом случае, как это известно из многочисленных экспериментов13, в узкой зоне около стенок трубы взвешенные частицы отсутствуют. Это явление носит название пристеночного эффекта. Его аналитическое исследование было проведено Ю. Н. Павловским14.
Движение смеси двух жидкостей одинаковой плотности и разной вязкости можно интерпретировать как движение некоей вязкой жидкости, подчиняющейся уравнением Навье – Стокса, – жидкости, концентрация которой может быть некоторой функцией расстояния от центра трубы:
c = c (R).
Если считать количество жидкой субстанции и градиент давления вдоль оси трубы заданными величинами, то для каждого распределения c(R) мы можем построить свое течение Пуазейля, причем расход Q будет зависеть от характера функции с(R).