Шрифт:
Светопоглощающий пигмент – это секрет одной из самых важных на свете машин, той, которая управляет экономикой жизни океанов и поверхности планеты. Хотя разные виды растений, водорослей и бактерий развили различные механизмы для запасания световой энергии, у них у всех есть структура, называемая фотохимическим реакционным центром. Там можно найти белки-антенны, включающие в себя несколько молекул светопоглощающего пигмента хлорофилла. Они улавливают солнечный свет в виде частиц света – фотонов, а потом проводят их энергию через серию молекул в реакционный центр, где она используется для чрезвычайно эффективного превращения углекислоты в сахара. Фотосинтетические процессы происходят в местах, настолько плотно набитых пигментными молекулами, что там вступают в игру квантово-механические процессы {63} . (Самая головокружительная ветвь физики, квантовая механика – разработанная в числе других Эрвином Шрёдингером, – имеет дело с микроскопическими явлениями.) Это одна из нескольких квантовых машин, используемых живыми существами в зрении, электронном и протонном туннелировании, обонянии и магниторецепции {64} . Это выдающееся открытие – еще одно доказательство идей Шрёдингера, который также рассматривал возможность того, что квантовые флюктуации играют роль в биологии {65} .
63
Engel, Gregory S., Tessa R. Calhoun, Elizabeth L. Read, Tae-Kyu Ahn, Tomas Mancal, Yuan-Chung Cheng, Robert E. Blankenship & Graham R. Fleming. “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.” Nature 446, стр. 782–786 (12 апреля 2007).
64
Fleming, Graham R., Gregory D. Scholes, Yuan-Chung Cheng. “Quantum effects in biology.” Procedia Chemistry, Vol. 3, Issue 1, 2011, стр. 38–57, ISSN1876–6196, 10.1016/j.proche.2011.08.011. http://www.sciencedirect.com/science/article/pii/S1876619611000507
65
Martin-Delgado, M. A. “On Quantum Effects in a Theory of Biological Evolution.” Scientific Reports 2, Article number: 302, 12 марта 2012.
Каждая молекулярная машина создана эволюцией для автоматического выполнения очень специфической задачи, от восприятия зрительных образов до сгибания мышц. Вот почему можно думать о них как о маленьких роботах. Как писали Чарльз Тэнфорд и Жаклин Рейнольдс в книге «Природные роботы» (2001), «у него нет сознания; он не управляется разумом или высшим центром. Всё, что делает белок, заложено в его линейный текст, производный от текста ДНК».
Самый важный прорыв в молекулярной биологии после открытия генетического кода был в определении деталей главного робота – рибосомы, которая занимается синтезом белка и таким образом направляет производство всех остальных клеточных роботов. Молекулярные биологи десятки лет знали, что в рибосоме сосредоточен центр всех танцев с производством белков. Чтобы функционировать, рибосоме нужны две вещи: матричная РНК (мРНК), инструкция по изготовлению белка, скопированная из хранилища генетической информации в клетке – с ДНК; и транспортная РНК (тРНК), которая приносит на хвосте аминокислоты, используемые для создания белка. Рибосома кодон за кодоном считывает последовательность с мРНК и к каждому кодону подбирает тРНК с соответствующим антикодоном, выстраивая их груз – аминокислоты – в правильном порядке. Рибосома также действует как катализатор-рибозим: соединяет аминокислоты ковалентной химической связью, добавляя их тем самым к растущей белковой цепочке. Синтез прекращается, когда в последовательности РНК появляется кодон «стоп», но после этого полимер из аминокислот должен еще сложиться в нужную трехмерную структуру, чтобы стать биологически активным белком.
Бактериальные клетки содержат около тысячи рибосомных комплексов, что позволяет им непрерывно синтезировать белок – как для замены деградировавших белковых молекул, так и для изготовления новых для дочерних клеток во время деления. Рибосому можно рассматривать под электронным микроскопом и видеть, как она изгибается и меняет форму в ходе работы. Проворот храповика {66} в глубине рибосомы – ключевой момент белкового синтеза. Весь синтез белка происходит чрезвычайно быстро: сборка цепочки длиной около ста аминокислот занимает секунды.
66
Frank, Joachim, and Rajendra Kumar Agrawal. “A ratchet-like inter-subunit reorganization of the ribosome during translocation.” Nature 406, стр. 318–322 (20 июля 2000).
Как и в случае двойной спирали, выявить подробности строения рибосомы удалось с помощью рентгеновской кристаллографии. Сначала, однако, надо было заставить рибосомы кристаллизоваться – как кристаллизуется из раствора соль, когда выпаривается вода, – чтобы получить хорошо организованные кристаллы из миллионов рибосом, собранных в правильные структуры, которые можно изучать с помощью рентгеновских лучей. Ключевое открытие было сделано в 1980-х, когда Ада И. Йонат в Израиле в содружестве с Хайнцем-Гюнтером Виттманом в Берлине вырастили кристаллы из бактериальных рибосом, выделенных из микроорганизмов горячих источников и Мертвого моря. Секреты бактериальной рибосомы были раскрыты в 2005 году, а строение эукариотной – дрожжевой – рибосомы в высоком (трехангстремном) разрешении было опубликовано французской группой в декабре 2011 года [6] .
6
Один ангстрем – это примерно размер одного атома, одна десятимиллиардная метра.
Бактериальная рибосома состоит из двух крупных частей, называемых 30S и 50S субъединицами, которые расходятся и сходятся во время работы. Меньшая субъединица 30S – это часть рибосомы, которая считывает генетический код; в большей, 50S, собственно делаются белки. Субъединица 30S изучена с точностью до атома Йонат и независимо – Венкатраманом Рамакришнаном в Лаборатории молекулярной биологии Совета по медицинским исследованиям в Кембридже (Англия). Они, например, открыли «акцепторный участок», часть субъединицы 30S, который распознает и отслеживает точность соответствия между матричной и транспортной РНК. Детали молекулярного строения показывают, как рибосома выполняет спаривание двух первых букв кодона: молекулы тычутся, пока не «ощутят» желобок в двойной спирали из хорошо подогнанных РНК, чтобы гарантировать, что код прочитывается с высокой достоверностью. При проверке третьей буквы в тройке, соответствующей конкретной аминокислоте, этот механизм оказывается менее строгим из-за неоднозначности кода. Это совпадает с наблюдением, что конкретной тРНК – и аминокислоте на ней – может соответствовать не одна тройка нуклеотидов мРНК. Например, аминокислоту фенилаланин может кодировать как тройка УУУ, так и УУЦ.
Кроме того, Гарри Ф. Ноллер из Калифорнийского университета в Санта-Крусе (начинавший свое исследование, будучи очарован тем, как двигаются молекулы) в 1999 году опубликовал первые подробные изображения целой рибосомы, а потом, в 2001-м, дополнил их еще более тонкими деталями. Его работа показала, как формируются и распадаются молекулярные мостики во время этой операции {67} . Рибосомная машина содержит пружины сжатия и кручения, сделанные из РНК, чтобы держать субъединицы вместе, когда они смещаются и проворачиваются относительно друг друга. Ее малая субъединица, двигаясь вдоль матричной РНК, связывается с транспортной РНК, у которой на одном конце свободный антикодон, а на другом – аминокислота. Аминокислоты связываются вместе в белок большой субъединицей, которая тоже связывается с транспортной РНК. Таким образом рибосома может пропускать через свой центр по 15 груженных аминокислотами молекул РНК в секунду, координируя присоединение новых звеньев к растущему белку.
67
http://library.cshl.edu/oralhistory/interview/cshl/memories/harry-noller-and-ribosome/
На нарушении этих функций бактериальных рибосом основано действие многих антибиотиков. К счастью, хотя бактериальные и человеческие рибосомы похожи, они достаточно различаются, чтобы антибиотики могли связаться с бактериальными рибосомами и блокировать их эффективнее, чем человеческие. Все аминогликозиды – тетрациклин, хлорамфеникол, эритромицин – работают, убивая бактериальные клетки вмешательством в работу рибосом.
Йонат, Рамакришнан и Томас А. Стейтц поделили Нобелевскую премию 2009 года по химии за свои опыты по выяснению, как работает эта чудесная машина.
По мере развития геномики роль РНК выглядела все более важной. Согласно центральной догме, РНК – всего лишь посредник, обеспечивающий выполнение команд, зашифрованных в ДНК. В этой модели двойная спираль ДНК расплетается, и ее генетическая информация копируется на одноцепочечную мРНК. В свою очередь мРНК переносит ее от генома к рибосомам. Общепринятым также было мнение, что ДНК, не кодирующая белки, – это «мусорная» ДНК. Оба представления изменились в 1998 году, когда Эндрю Файр из Института Карнеги в Вашингтоне, Крейг Кэмерон Мелло из Массачусетского университета и их коллеги опубликовали свидетельства того, что двухцепочечная РНК, снятая с некодирующей ДНК, может быть использована, чтобы отключать определенные гены, – что помогло объяснить некоторые озадачивающие явления, наблюдающиеся, например, у петуний {68} . Теперь стало ясно, что некоторые участки ДНК кодируют короткие молекулы РНК – молекулярные выключатели, играющие ключевую роль в том, как и насколько интенсивно используются гены. Вся информация в живой клетке в конечном счете заключена в определенном порядке нуклеотидов и аминокислот – в ДНК, РНК и белках. Поддержание этой чрезвычайной упорядоченности в геноме определяется священными законами термодинамики. Чтобы молекулярные машины могли обуздать тепловое движение, надо затратить химическую энергию. Клетки также требуют постоянных затрат этой энергии, чтобы образовывать ковалентные связи между молекулами, а также для выстраивания этих молекул в правильном порядке или последовательности. Посреди этой бури химического хаоса лежит относительно неколебимый набор инструкций, закодированных в ДНК.
68
Napoli, C., Lemieux, C., Jorgensen, R. (1990). “Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans.” Plant Cell 2 (4), стр. 279–289.