Шрифт:
К счастью, репликация риновирусов редко происходит за пределами эпителия дыхательных путей, их активность быстро подавляется усилиями иммунной системы, которая мобилизуется сразу после инфицирования клеток вирусом. Сразу после него клетки носового эпителия распознают вторгшийся вирус и запускают активацию защитной сети экспрессии генов. Эти ответы включают в себя врожденную клеточную антивирусную защиту и адаптивную реакцию иммунной системы, которая запускается в каскаде развертывающихся после инфицирования событий (Jacobs, Lamson, St. George et al., 2013). Эти реакции немедленно заставляют инфицированную клетку секретировать медиаторы воспаления, кинины и простагландины, которые вызывают повышение сосудистой проницаемости и стимулируют экзокринную секрецию. В результате первыми симптомами простуды являются зуд в носу и насморк. Первоначальное отделяемое из носа состоит из плазмы, просачивающейся из сосудов носовых ходов; только позднее жидкость начинает представлять собой нагруженный вирусами слизистый секрет. Сообщение между клетками продолжается благодаря интерлейкинам, сигнальным молекулам, таким как интерлейкин-8 и хемокины, которые выделяются в инфицированных тканях. Интерлейкин-8 является мощным хемоаттрактантом, который перемещает иммунокомпетентные клетки (нейтрофилы и моноциты) к месту инфекции для борьбы с незваными гостями. Количество интерлейкина-8 в отделяемом носовых ходов прямо пропорционально тяжести симптомов простуды.
Именно наша собственная иммунная система повинна в усугублении тяжести клинических проявлений простуды, так как она отвечает за отграничение и удаление из организма инфицированных вирусами клеток. Степень тяжести симптомов, естественно, играет важную роль в передаче вируса, который высвобождается из носовых эпителиальных клеток и покидает организм хозяина с током носового секрета. Риновирусная инфекция, не спровоцировавшая иммунного ответа, не достигает своей цели – успешной передачи вируса новым восприимчивым хозяевам. Интересно отметить, что одним из ответов инфицированных клеток является увеличение экспрессии ММКА-1. Это тот самый рецептор некоторых серотипов риновируса человека, но не всех, но усиление экспрессии ММКА-1 происходит при инфицировании всеми серотипами риновируса, что указывает на то, что это не является прямым результатом связывания вируса с рецептором. Папи и его коллеги предположили, что не поврежденные риновирусом эпителиальные клетки могут стать более восприимчивыми к последующим инфекциям в результате такого усиления экспрессии упомянутой молекулы (Johnston et al., 1998; Papi, Johnston, 1999), но вопрос так и остался открытым. В любом случае этот феномен ограничен теми риновирусами, которые используют ММКА-1 для проникновения в клетку. Но почему тогда все риновирусы, независимо от рецепторной селективности, оказывают одно и то же воздействие на инфицированную клетку? Вероятнее всего, усиление экспрессии ММКА-1 не влияет на окончательную продуктивность вирусной инфекции для каждой отдельной клетки, но феномен этот возник и сохранился для увеличения эффективности миграции лейкоцитов к инфицированным тканям. Вероятно, это самый важный биологический ответ, так как этим способом риновирус провоцирует более эффективную мобилизацию иммунокомпетентных клеток в эпителии носовых ходов, усугубляя тяжесть клинических проявлений, а значит, повышая заразительность инфекции (Papi, Johnston, 1999).
Специалисты по эволюционной биологии придерживались мнения, что длительная взаимная адаптация вируса и хозяина приводит в ходе эволюции к таким отношениям, которые минимизируют отрицательные последствия заболевания для хозяина. Логическим выводом из такого рассуждения является то, что инфекция со временем будет вызывать более легкое заболевание или вообще перестанет его вызывать. Такой исход часто очевиден при вирусных инфекциях, которые претерпели совместную эволюцию со своими хозяевами и следовали за его видовой дивергенцией в течение длительного, по меркам эволюции, времени. В результате интенсивной гонки вооружений между хозяином и вирусом такая эволюционная разрядка возможна только в том случае, если вирус сможет беспрепятственно распространяться в отсутствие симптомов заболевания. В случае риновируса, заразительность которого зависит от выраженности симптомов, естественный отбор, по необходимости, поддерживает его высокую вирулентность и способность провоцировать выраженные симптомы. В ходе своих кратковременных отношений с организмом хозяина вирусы должны создать условия, которые позволяли бы им свободно перемещаться от одного хозяина к другому. Было бы, однако, неразумно полагать, будто эволюция модулировала тяжесть заболевания, вызываемого риновирусами, оптимизируя возможность передачи и заражения. Это давление эволюции, скорее всего, ответственно за сотворение того, что мы называем простудой, заразной инфекцией, которая вызывает заметные симптомы со стороны верхних дыхательных путей. Относительно доброкачественная природа заболевания и его легкая симптоматика не снижают успешности вируса: он является надежным переносчиком вирусной генетической информации в человеческой популяции. Простуда вызывает легкие симптомы, которые практически не влияют на качество нашей обыденной жизни. Мы не прерываем общение с другими потенциальными жертвами, несмотря на то что являемся источниками этой заразы. Это настоящее преступление.
Необычное разнообразие
Болезнь, вызываемую риновирусами, можно назвать «бурей в стакане воды»; нет массивного разрушения тканей, инфицируются и погибают очень немногие клетки слизистой оболочки носовых ходов. После разрешения инфекции мы приобретаем стойкий иммунитет в отношении того риновируса, который вызвал данное заболевание. Реинфекция тем же штаммом риновируса исключена благодаря иммунологической памяти, которая позволяет организму мгновенно реагировать на вторжение знакомого пришельца и уничтожать его на корню. Реинфекция тем же штаммом риновируса, если она вообще случается, может иметь место при ослаблении иммунологической памяти, что при некоторых вирусных инфекциях происходит спустя достаточно продолжительный период времени. Успешность риновирусов, ежегодно вызывающих простуду у наших детей, не является свидетельством реинфекции тем же вирусом (под «тем же вирусом» я имею в виду тот же штамм вирусов), но говорит об инфекции другим штаммом риновируса, отличающимся генетически. Эти повторные инфекции говорят о большом числе и разнообразии типов риновирусов, которые одновременно циркулируют в нашей популяции. Убедительное подтверждение этого факта было получено в исследовании, проведенном в университете штата Висконсин. Наблюдали группу из тридцати четырех детей, страдавших бронхиальной астмой. Наблюдение вели в сентябре, когда дети только что вернулись в школу (Olenec et al., 2010). На третьей неделе месяца шестнадцать из тридцати четырех детей заболели риновирусной инфекцией; в течение месяца группа ученых выявила семнадцать различных риновирусных штаммов в этой когорте наблюдаемых. Несмотря на то что наблюдали детей, страдавших бронхиальной астмой, у которых восприимчивость к риновирусной инфекции и длительность простуды может быть больше, чем у здоровых сверстников, это наблюдение служит наглядной иллюстрацией того, что в каждый данный момент времени в человеческой популяции циркулирует множество различных штаммов риновирусов.
Для того чтобы исследовать эволюцию риновирусов, специалисты по сравнительной геномике проанализировали геномные последовательности различных изолированных популяций вирусов, чтобы найти основу их генетической вариабельности и выявить давление отбора, которое создало это генетическое разнообразие. Главным в способности риновирусов адаптироваться к среде и развиваться являются ошибки при репликации РНК. Наблюдение вариантов нуклеотидных последовательностей в разных штаммах риновирусов позволило многое узнать о силах, движущих их эволюцию. Здесь требуются некоторые пояснения: наш генетический код (а вирусы используют точно такой же) является по своей природе «вырожденным». Код должен распознавать и идентифицировать каждую из двадцати одной аминокислоты, которые в различных сочетаниях и последовательностях образуют белки; кроме того, последовательности нуклеотидов должны кодировать стоп-сигнал. Невырожденный словарь содержал бы двадцать два слова: по одному на каждую аминокислоту, и еще одно дополнительное слово для сигнала рибосоме прекратить трансляцию белка. На самом деле, в алфавите рибонуклеотидов содержатся четыре разных основания (думайте о них как о буквах): гуанидин, аденин, цитидин и урацил. Эти буквы соединяются, образуя слова или, иначе говоря, кодоны из трех букв, которые определяют, какая аминокислота будет включена в белок. Так, существует 43 = 64 доступных слова, в то время как нужно двадцать одно слово для аминокислот и одно слово-сигнал для прекращения трансляции. На самом же деле, одна аминокислота может кодироваться более чем одним кодоном, отсюда и вырожденность, иными словами, избыточность кода. Это свойство генетического кода дает ценный инструмент в руки ученых, изучающих эволюцию. Так как слова (сиречь, кодоны) с различным написанием (различные триплетные последовательности из четырех оснований) могут обозначать одну и ту же аминокислоту, то некоторые ошибки в записи генетического кода могут не приводить к нарушению смысла, и в белок будет включена та же аминокислота. Такие изменения называют синонимичными мутациями. Если же изменение в записи кодона приводит к включению в белок другой аминокислоты, то речь идет о несинонимической мутации.
Ниже приведены примеры синонимических и несинонимических мутаций для аминокислоты лейцина:
ЦУУ (лейцин) —› ЦУЦ (лейцин) = синонимическая мутация;
ЦУУ (лейцин) —› ЦГУ (аргинин) = несинонимическая мутация.
Исследование полных геномов множества изолированных популяций риновирусов и оценка числа синонимических изменений в сравнении с числом несинонимических изменений в геноме позволило специалистам определить тип естественного отбора и природы его давления на разные участки генома. Если очищающая селекция есть преобладающая форма давления отбора, то он будет поддерживать сохранение уже существующих последовательностей аминокислот в белках. Синонимические изменения терпимы, потому что не приводят к изменениям в белковом составе вируса. Несинонимические нуклеотидные изменения будут отвергнуты, потому что они вредят полноценности вирусного генома. С другой стороны, если преобладают условия, в которых изменения белкового состава вируса благоприятны в отношении давления отбора, то в последовательностях генома будет обнаруживаться большая доля несинонимических мутаций. Такая ситуация называется положительным отбором.
Стоит особо отметить исследования, проведенные Кистлером и его коллегами в Калифорнийском университете Сан-Франциско (Kistler et al., 2007). Авторы изучали последовательности полного генома репрезентативного набора из тридцати четырех риновирусных штаммов. Ученые пришли к выводу, что большая часть генома риновирусов возникла в условиях очищающего давления естественного отбора. Большая часть генетических вариаций, обусловленных ошибками при репликации вирусной РНК, следовательно, возникли в результате вредоносных для адаптации вируса изменений. Естественный отбор вычищает геномы с мутировавшими последовательностями, которые изменяют последовательность аминокислот в белках. Отличительный признак этой очищающей селекции заключается в том, что допускаются синонимические мутации, которые, таким образом, выявляются чаще, чем несинонимические. Это совпадает с тем, чего можно ожидать от вируса, который в высшей степени, можно сказать, оптимально приспособился к своему хозяину. В этом случае давление отбора, приводящее к генетическим изменениям, прекращается. Учитывая заболеваемость простудой, мы неизбежно приходим к выводу, что риновирусы прекрасно приспособились к нам.
Другие наблюдения проливают свет на движущие силы происхождения множества серотипов риновирусов. В некоторых дискретных участках их генома ученые увидели большую, чем ожидалось, частоту несинонимических мутаций в сравнении с синонимическими: в этой части генома поработал положительный естественный отбор. Эти участки ограничиваются теми последовательностями, которые кодируют белки, образующие внешний капсид вируса, и отдельными участками, кодирующими неструктурные белки. Участки неструктурных белков, оказавшиеся под действием положительного отбора, ограничены участками РНК, которые не играют главной роли в функции вируса внутри клетки. Вероятно, что это селективное давление, ведущее к изменениям, возникло в результате воздействия на риновирусы со стороны иммунной системы. Белки вириона, то есть белки, ассоциированные с вирусными частицами, распознаются циркулирующими защитными антителами, возникающими в ответ на инфицирование вирусом. После выздоровления антитела данной специфичности делают пациента невосприимчивым к реинфекции тем же серотипом риновируса. Эти антитела распознают разные риновирусные серотипы, и их специфичность стала основой для выделения более ста серотипов риновирусов, известных к настоящему времени. Постоянное давление отбора заставляет вирусы обходить эти нейтрализующие антитела; вирусы делают это, маскируясь внутри измененного капсида, который не может быть распознан иммунной системой, отреагировавшей ранее на другие штаммы вируса простуды. Разумно предположить, что эволюция множества серотипов риновирусов позволила им сохраниться и процветать на нашей человеческой популяции, так как они получают беспрепятственный доступ к сборочному конвейеру на рибосомах восприимчивых организмов.