Баландин Рудольф Константинович
Шрифт:
В данном случае важно, что Вернадский был, пожалуй, прав в главном: космический вакуум -- основа нашей Вселенной. Она, возможно, родилась из вакуума. Космические взрывы стали происходить в ней значительно позже, когда появились скопления плазмы, достигающие критических величин.
Сгущения электромагнитных волн -- фотоны, кванты энергии -- могут рождать частицы вместе с античастицами. Подобные процессы (фоторождение) могут со временем обогащать нашу Вселенную частицами. Не исключено в принципе фоторождение всех частиц, всего вещества, составляющего видимый нами мир.
Если попытаться шаг за шагом проследить возможные пути фоторождения Вселенной, открываются совершенно новые научные проблемы. В наше время, в середине XX века, они кажутся фантастическими.
Если рождались в вакууме частицы, то одновременно в таком же количестве должны появляться и античастицы. Куда же они делись?
Одна из существующих гипотез исходит из возможности разделения в космосе частиц и античастиц. Значит, должны где-то блуждать антимиры, состоящие из античастиц.
Следов этих антимиров еще не обнаружено.
Однако не лишен правдоподобия иной вариант. Античастицы могли стать частью более крупных частиц. То есть все окружающее нас вещество и мы сами, все известные нам частицы включают в себя античастицы. Антимиры внутри нас!
Подобную мысль высказывали вскользь некоторые физики (например, Р. Фейнман). Но не нашли для нее убедительных доказательств. Не исключено, что таких доказательств нет вовсе. И все-таки имеет смысл не отстранять идею фоторождения Вселенной и объединения частиц с античастицами. История науки знает немало случаев, когда гипотеза, казавшаяся крупным специалистам неверной, получала со временем всеобщее признание.
Возможно, такая судьба ожидает и гипотезу Вернадского об активности космического вакуума и его решающей роли в жизни нашей Вселенной.
СИММЕТРИЯ
Невозмутимый строй во всем,
Созвучье полное в природе...
И строй кристаллов, и строй этих стихов Тютчева, и строй геометрических фигур, и многое другое -- проявления соразмерности или, говоря научным термином, симметрии.
Симметрия -- одно из удивительнейших свойств нашего мира.
Выражение порядка. В мире хаоса не возникнут звезды и планеты, летящие по своим орбитам, не появятся растения, животные, люди. И если в отдельных областях, среди скопища атомов, может царить хаос, то над этими областями, в крупных скоплениях материи, планетах, в звездных системах и галактиках владычествует порядок и его непременная спутница -- симметрия.
Мысль Вернадского упорно, долгие годы проникала в тайну симметрии. Впервые он задумался над симметрией еще в университете. Изучение кристаллов опирается на это понятие. Оно пришло сюда из геометрии и обосновалось настолько прочно, что его стали считать почти исключительно принадлежностью кристаллографии.
Учебный курс кристаллографии сопровождается демонстрацией разнообразных геометрических фигур, макетов, наглядно иллюстрирующих исключителььнй порядок, господствующий в мире кристаллов. Определяются плоскости симметрии -- как бы зеркала, отражающие, порой многократно, одну и ту же фигуру. Выделяются оси симметрии, вращаясь вокруг которых кристалл попеременно, поворачиваясь на один и тот же угол, принимает одинаковые положения.
К тому времени, когда Вернадский от учебных упражнений перешел к самостоятельному изучению кристаллов, были убедительно доказаны основные теоремы симметрии в кристаллографии.
Если в геометрии возможны, по существу, бесконечные варианты фигур с различными видами симметрии, то для кристаллов число этих вариантов резко ограничено. В работах Е. С. Федорова было дано самое полное и очень своеобразное развитие идеи симметрии в приложении к кристаллам.
Читая в конце прошлого века свои лекции по кристаллографии, Вернадский обратил особое внимание на проблему симметрии. По своему обыкновению основательно углубившись в историю этого понятия, Вернадский пришел к мысли, что оно выступало в разных обличьях, хотя на это редко обращали внимание исследователи. Во-первых, симметрия в геометрии. Она основана на анализе и сопоставлении идеальных фигур во всем их разнообразии.
Во-вторых, симметрия в кристаллографии. Здесь она переносится из геометрии на реально существующие объекты. Рассматриваются идеальные фигуры, как и в геометрии, но только для частных кристаллических форм. Возникает новая проблема: почему кристаллы обладают лишь ограниченными видами симметрии?
В-третьих, идея симметрии имеет философское значение: она направляет поиски мировой гармонии в науке, искусстве.
Специальными исследованиями проблемы симметрии Вернадский не занимался до 30-х годов. К этому времени он, помимо кристаллографии, сумел охватить много наук: минералогию, геохимию, биологию, радиогеологию, биогеохимию. В статье 1927 года он счел необходимым рассматривать симметрию как свойство пространства, физической разнородной среды. Такова идея симметрии в естествознании.
Кристалл -- это частность, одна из бесчисленных разновидностей пространства. К любой из этих разновидностей приложимо понятие симметрии не только как геометрической абстракции, описывающей форму объектов, но и как выражения внутренней структуры реального пространства. "Для естествоиспытателя... пустое незаполненное пространство не существует... Реальное пространство натуралиста совпадает с той физической средой, в которой идут наблюдаемые им явления..."
Вернадский, прекрасно зная историю идей, вполне отдает себе отчет, что его мысль высказывалась раньше (он ссылается на Л. Пастера, П. Кюри, А. Гельмгольца). Кому-то, возможно, покажется, будто Вернадский просто-напросто воспользовался имевшейся идеей и частично ее подработал. Однако надо помнить, что знал он ее три десятка лет и только спустя такой срок вернулся к ней, осмыслил ее по-своему, заново.