Вход/Регистрация
Кибернетика и общество (сборник)
вернуться

Винер Норберт

Шрифт:

Гиббсу приходилось опираться на теории измерений и теории вероятностей, которые использовались уже минимум двадцать пять лет и которые во многом не соответствовали его потребностям. А между тем в то же самое время в Париже Борель и Лебег разрабатывали теорию интеграции, которая, что выяснилось позднее, отлично подходила для воплощения идей Гиббса. Борель был математиком и успел завоевать репутацию в области теорий вероятности; вдобавок он обладал отменным чутьем физика. Он выполнил работу, что легла в основу данной теории измерений, но не сумел достичь той ступени, когда фрагменты рассуждений становятся цельной теорией. Это сделал его ученик Лебег, который был человеком совершенно иного склада. Он не обладал чутьем физика и нисколько не интересовался физикой. Однако Лебег решил поставленную Борелем задачу, хотя и рассматривал решение этой задачи всего лишь как способ исследования рядов Фурье и других разделов чистой математики. Произошел конфликт, когда обоих этих ученых выдвинули кандидатами во Французскую академию наук, и только после бесчисленных взаимных нападок они оба удостоились чести стать академиками. Правда, Борель продолжал подчеркивать важность изысканий Лебега и своих собственных как инструмента для исследований в физике, но, по-моему, именно я в 1920 году первым применил интеграл Лебега к конкретной физической задаче – если быть точным, к задаче броуновского движения частиц.

Это произошло много лет спустя после смерти Гиббса; на протяжении двух десятилетий его гипотезы оставались одной из тех загадок науки, которые плодоносят, даже если кажется, что они никак не должны плодоносить. Многие ученые выдвигали догадки, значительно опережавшие свое время; это в полной мере относится и к области математической физики. Введение Гиббсом вероятности в физику случилось задолго до появления адекватной теории таких вероятностей, которые ему требовались. При всех пробелах в его постулатах я убежден, что именно Гиббсу, а не Альберту Эйнштейну, Вернеру Гейзенбергу или Максу Планку следует воздавать должное за первую великую революцию в физике XX века.

В итоге этой революции физика перестала притязать на изучение того, что происходит всегда; теперь она изучает, скорее, то, что происходит с преобладающей степенью вероятности. Вначале в работах самого Гиббса этот контингенциальный подход опирался на ньютоновское основание, элементы которого, чью вероятность надлежало выявить, трактовались как системы, подчиняющиеся ньютоновским законам. Сама теория Гиббса была по своей сути новой, но варианты, с которыми она была совместима, оставались теми же, какие рассматривал еще Ньютон. В дальнейшем же с физикой произошло следующее: косный ньютоновский базис был отброшен – или хотя бы серьезно модифицирован, а контингенциальность Гиббса превратилась ныне, во всей своей наготе, в полноценную основу современной физики. Конечно, следует признать, что данный предмет еще далеко не исчерпан и что Эйнштейн и, в какой-то мере, Луи де Бройль придерживаются той точки зрения, что строго детерминированный мир является более приемлемым, чем мир контингенциальный; но эти великие ученые ведут арьергардные бои против подавляющих сил молодого поколения.

Отмечу любопытную перемену, суть которой состоит в том, что в вероятностном мире мы больше не имеем дел с величинами и рассуждениями, подразумевающими определенную, реальную Вселенную в целом; вместо этого мы задаем вопросы, ответы на которые можно отыскать, допустив существование большого числа аналогичных вселенных. Следовательно, случай признан не только как математический инструмент исследований в физике, но и как ее неотделимая часть.

Такое признание наличия в мире элемента неполного детерминизма, почти иррациональности, в известной степени равнозначно обнаружению Фрейдом глубоко иррациональной составляющей человеческого поведения и мышления. В современном мире политической и интеллектуальной неразберихи налицо естественное стремление объединять Гиббса, Фрейда и приверженцев нынешней теории вероятности в группу выразителей некой общей тенденции; но я не хотел бы настаивать на этом. Разрыв между образом мышления Гиббса – Лебега и интуитивными, пускай в некотором отношении вроде бы продиктованными логикой допущениями Фрейда слишком велика. Однако в признании фундаментальности роли случая как элемента самой Вселенной эти ученые очень близки друг другу – и близки традиции, восходящей к святому Августину. Ведь этот элемент случайности, эта органическая неполнота вполне сопоставима (причем здесь не приходится прибегать к риторическим преувеличениям) со злом; святой Августин характеризует отрицание добра, то есть зло как несовершенство, в отличие от положительного (и предумышленного) зла манихейцев [2] .

2

По Августину, зло есть ограниченное добро, последнее же в абсолюте непостижимо для человека как ограниченной сущности, поэтому он лишь выбирает между большим и меньшим злом; согласно манихейской доктрине, добро и зло – равноправные мировые начала.

Настоящая книга посвящена рассмотрению воздействия точки зрения Гиббса на современную жизнь – с позиции тех непосредственных изменений, которым подверглась нынешняя наука, и с позиции тех изменений, которые косвенным образом повлияли на наше отношение к жизни вообще. Посему следующие главы содержат и технические описания, и философские обсуждения вопросов наподобие того, что мы должны делать и как нам реагировать на новый мир, нам противостоящий.

Повторяю, нововведение Гиббса заключалось в том, что он стал рассматривать не единственный мир, а все те миры, где можно найти ответы на ограниченный круг вопросов, касающихся нашей среды обитания. Гиббс сосредоточился прежде всего на степени, до которой наши ответы относительно одного набора миров будут допустимы по отношению к другому, более крупному ряду миров. Кроме того, Гиббс предполагал, что такая вероятность имеет естественную тенденцию к возрастанию по мере старения Вселенной. Подобное направление вероятности называется энтропией, а характерная черта энтропии заключается именно в возрастании.

По мере возрастания энтропии Вселенная – и все замкнутые системы во вселенной – выказывает естественную склонность к упадку и утрате своих отличительных черт; она стремится от наименее вероятного состояния к наиболее вероятному, от состояния организованности и дифференцированности, в котором наличествуют различия и формы, к состоянию хаоса и единообразия. Во Вселенной Гиббса порядок наименее вероятен, а хаос, наоборот, наиболее вероятен. Но пускай Вселенная в целом, если таковая действительно существует, движется к увяданию и гибели, имеются локальные анклавы, направление развития которых, по-видимому, противоположно направлению развития Вселенной в целом, и этим анклавам свойственно ограниченное, временное стремление к увеличению организованности. Жизнь находит себе приют в некоторых из таких анклавов. Именно исходя из данного положения начала свою научную эволюцию кибернетика [3] .

3

Находятся те, кто выражает сомнение в полной схожести энтропии и биологической неорганизованности. Думаю, рано или поздно мне придется уделить пристальное внимание подобным мнениям, но пока я должен и буду исходить из предположения, что различия заключаются не в фундаментальной природе самих названных качеств, а в системах, в рамках которых выполняется наблюдение за ними. Пожалуй, слишком безрассудно уповать на появление такого строгого и всеохватного определения энтропии, с которым согласятся все исследователи и которое будет распространяться не только на замкнутые, изолированные системы. – Примеч. авт.

Глава I. Кибернетика в истории

После Второй мировой войны я работал над многими разделами теории передачи сообщений. Помимо электротехнической теории передачи сигналов существует более обширная область знаний, охватывающая не только исследование языка, но и изучение сообщений как способов управления машинами и сообществами; сюда же относятся разработка вычислительных машин и других подобных автоматов, некоторые психологические опыты и исследования нервной системы, а также новая, осторожно применяемая теория научного метода [4] . Эта более обширная наука о сообщениях представляет собой вероятностную теорию и является неотъемлемой частью того научного течения, которое обязано своим происхождением Уилларду Гиббсу и которое я уже кратко описал в предисловии.

4

Имеется в виду теория научного познания, разработанная К. Поппером.

До недавнего времени не существовало общего слова для характеристики этого комплекса идей, и, дабы охватить всю область одним термином, я счел себя обязанным изобрести такой термин. Так появился термин «кибернетика», производное от греческого слова kubernetes, то есть «рулевой, кормчий»; от того же греческого слова происходит в конечном счете слово governor («губернатор, правитель») [5] . Позднее я совершенно случайно выяснил, кстати, что данный термин ранее употреблял Андре Ампер применительно к политической науке, а в другом контексте он был введен одним польским ученым; оба этих употребления термина «кибернетика» относятся к первой половине XIX века [6] .

5

Латинское gubernator, от которого опосредованно возникло английское слово governor, происходит от греческого kubernetes.

6

Ампер в сочинении «Опыт о философии наук» (1834–1843) определял кибернетику (cybernetique) как науку об управлении государством, призванную обеспечить гражданам различные блага; «польский ученый» – педагог и философ Б. Трентовский, автор сочинения «Отношение философии к кибернетике, или Искусство управления государством» (1843).

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: