Шрифт:
Основные положения ЭВО
В физической космологии, предполагая, что природу описывает ТВО, ЭВО была периодом в эволюции ранней вселенной, следующим за Планковской эпохой и предшествовавшим Инфляционной эпохе. С момента начала ЭВО квантовые эффекты слабеют и вступают в силу законы ОТО. Отделение гравитационного взаимодействия от остальных фундаментальных взаимодействий на границе эпох – Планковской и Великого объединения – привело к одному из фазовых переходов первичной материи, сопровождавшегося нарушением однородности её плотности. После отделения гравитации (первое отделение) от объединения фундаментальных взаимодействий в конце Планковской эпохи, три из четырёх взаимодействий – электромагнитное, сильное и слабое взаимодействия – все ещё оставались объединенными как электроядерное взаимодействие. В течение Эпохи Великого Объединения, такие физические характеристики как, например масса, аромат и цвет были бессмысленны.
Считается, что во время ЭВО температура Вселенной была сопоставима с характерными температурными градиентами теории объединения. Если энергию великого объединения принять 1015 ГэВ, это будет соответствовать температурам выше 1027 K.
Принято считать, что ЭВО закончилась приблизительно в 10– 34 секунд с момента Большого Взрыва, когда плотность материи составляла 1074 г/см^3, а температура 1027 K, что соответствует энергии 1014 ГэВ – в этот момент времени от первичного взаимодействия отделяется сильное ядерное взаимодействие, которое начинает играть принципиальную роль в создавшихся условиях. Это отделение привело к следующему фазовому переходу и, как следствие, масштабному расширению Вселенной – инфляционное расширение Вселенной и значительные изменения плотности вещества и его распределения во Вселенной.
Эпоха раздувания (инфляции)
Между 10– 36 и 10– 32 с после Большого Взрыва. В эту эпоху Вселенная всё ещё преимущественно заполнена излучением, начинают образовываться кварки, электроны и нейтрино. На ранних стадиях эпохи расширения, образующиеся кварки и гипероны (которые забирают энергию от фотонов) быстро распадаются. Предполагают существование циклов чередующихся нагрева и повторного охлаждения Вселенной. После окончания этого периода строительный материал Вселенной представлял собой кварк-глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. Дальнейшее падение температуры привело к следующему фазовому переходу – образованию физических сил и элементарных частиц в их современной форме, что привело через эпоху электрослабых взаимодействий[], эпоху кварков[], эпоху адронов[], эпоху лептонов[] к переходу к эпохе нуклеосинтеза[].
Бариогенезис
Бариогенез – состояние Вселенной на промежутке времени 10– 35—10– 31 секунд с момента Большого Взрыва (Инфляционная эпоха), во время которого происходило объединение кварков и глюонов в адроны (в том числе в барионы), а также название самого процесса такого объединения. Считается, что вследствие выполнения условий Сахарова (несохранение барионного числа, CP-нарушение, нарушение теплового равновесия) во время бариогенезиса возникла так называемая барионная асимметрия Вселенной – наблюдающаяся асимметрия между материей и антиматерией (в современной Вселенной присутствует почти исключительно первая).
Барионная асимметрия Вселенной
Барионная асимметрия Вселенной – наблюдаемое преобладание в видимой части Вселенной вещества над антивеществом. Этот наблюдательный факт не может быть объяснён в предположении исходной барионной симметрии во время Большого взрыва ни в рамках Стандартной модели, ни в рамках общей теории относительности – двух теорий, являющихся основой современной космологии. Наряду с пространственной плоскостностью наблюдаемой Вселенной и проблемой горизонта он представляет собой один из аспектов проблемы начальных значений в космологии.
Существует несколько гипотез, пытающихся объяснить явление барионной асимметрии, однако ни одна из них не признана научным сообществом достоверно доказанной.
Наиболее распространены теории, расширяющие Стандартную модель таким образом, что в некоторых реакциях возможно более сильное нарушение CP-инвариантности по сравнению с её нарушением в Стандартной модели. В этих теориях предполагается, что изначально количество барионной и антибарионной материи было одинаково, однако впоследствии в силу каких-либо причин из-за несимметричности реакций относительно того, какие частицы – вещества или антивещества – в них участвуют, произошло постепенное нарастание количества барионного вещества и уменьшение количества антибарионного. Подобные теории возникают естественным образом в моделях великого объединения.
Другие возможные сценарии возникновения асимметрии привлекают либо макроскопическое разделение областей локализации вещества и антивещества (что представляется маловероятным), либо поглощение антивещества чёрными дырами, способными отделить его от вещества при условии нарушения CP-инвариантности. Последний сценарий требует существования гипотетических тяжёлых частиц, распадающихся с сильным нарушением CP-инвариантности.
Викиновости по теме:
Учёные предполагают, что барионная асимметрия связана с тёмной материей
В 2010 году была выдвинута гипотеза, что барионная асимметрия связана с наличием тёмной материи. Согласно сделанному предположению носителем отрицательного барионного заряда являются частицы тёмной материи, не доступные для непосредственного наблюдения в земных экспериментах, но проявляющихся через гравитационное взаимодействие на масштабах галактик.
Эпоха электрослабых взаимодействий