Вход/Регистрация
Квантовый лабиринт. Как Ричард Фейнман и Джон Уилер изменили время и реальность
вернуться

Халперн Пол

Шрифт:

Настольная лампа в виде пирамиды освещает тот пассаж, который читает молодой магистрант, описание лобового столкновения двух тележек на лишенной трения дороге. Долговязый юноша крутит проблему в голове – если известна масса тележек и их начальная скорость, то законы физики со стопроцентной вероятностью предскажут, что произойдет дальше.

В соответствии с третьим законом Исаака Ньютона на каждое действие в подобной системе имеется противодействие равной силы, но противоположное по направлению. Это значит, что каждая тележка воздействует на другую с той же самой силой, но вот направление этой силы будет отличаться на сто восемьдесят градусов.

Но по второму закону Ньютона сила – это изменение импульса, а импульс – скорость, умноженная на массу. Поскольку каждая тележка подвергается воздействию одинаковой силы, то импульс для них изменяется на одинаковую величину: но если в одном случае он возрастает, то в другом уменьшается.

Этот универсальный баланс именуется «законом сохранения импульса».

С идеальной симметрией тележки после столкновения будут двигаться прочь друг от друга, но что произойдет с их скоростями? Учитывая, что импульс определяется массой и скоростью, то все просто: та, что легче, будет двигаться быстрее, чем более тяжелая.

Это и есть красота классической ньютонианской физики, классической в том смысле, что она вполне очевидно соотносится с явлениями хорошо знакомой нам повседневной жизни, в то время как квантовая физика проявляет себя в основном на субатомном уровне. В обычных ситуациях мы можем предсказать, что будет дальше, с помощью сравнительно простых законов.

В учебнике есть раздел, посвященный гармоническим колебаниям: поведение струн, резиновых лент, маятников и прочих простых систем, всегда возвращающихся в равновесное состояние после того, как их растягивают, отклоняют, двигают, или другим образом из него выводят. Струны являются лучшим примером объектов подобного рода.

И точно так же, как и в случае со столкновением, законы классической физики гарантируют, что колебания любой струны на сто процентов предсказуемы. Если убрать трение, то растянутая, а затем отпущенная струна вернется в первоначальное состояние.

Ко времени, когда она достигнет равновесия, она будет двигаться с максимальной скоростью, и произойдет это по той причине, что энергия струны будет переходить из одной формы в другую. Энергия, что ассоциируется с начальной позицией струны, именуемая «потенциальной», трансформируется в энергию, связанную с колебаниями и обозначаемую как «кинетическая».

Но драма на этом не заканчивается.

Струна продолжает двигаться, пока не возвращается в максимально сжатое состояние. Здесь она на мгновение замирает, и вся ее кинетическая энергия превращается в потенциальную, в этот раз связанную уже не с растяжением, а со сжатием. Потом она движется дальше, уже в другую сторону, потенциальная энергия трансформируется в кинетическую, затем наоборот, пока не будет достигнуто максимальное растяжение.

Цикл перехода энергии из потенциальной в кинетическую и обратно, и снова, и снова именуется «сохранением энергии».

Простой маятник действует по тому же принципу: он качается туда-сюда, туда-сюда, превращая потенциальную энергию в кинетическую и обратно в потенциальную. Если бы только не было трения, он мог бы так раскачиваться вечно, и механические часы в этой идеальной ситуации имели бы шансы тикать сколь угодно долго.

Это идеальный, вечный ритм, определенный метрономом закона сохранения.

Долговязый юноша начинает отбивать простую мелодию на крышке стола: тук-тук… тук-тук-тук… тук.

Это ритм.

Идея циклического времени, состоящая в том, что все повторяется, одни и те же последовательности событий происходят снова и снова, возникает при виде того, как в природе действуют законы сохранения энергии. Закрытые системы, не связанные с внешним миром, имеют тенденцию повторять один и тот же набор состояний, переходя из одного в другое и начиная снова. В случае очень сложных систем завершение цикла может требовать астрономически долгих периодов, но все же в конечном итоге такая система приходит к той точке, откуда она начинала, ведь если играть в крестики-нолики, не переставая, то рано или поздно придется повторить ход.

Природа любит циклы и круговороты.

Но есть такие типы энергии, которые невозможно полностью использовать снова, например, тепло, вырабатываемое в механизмах благодаря трению или сопротивлению воздуха. Копящиеся объемы теряемой энергии порождают «стрелу необратимости», которая указывает в будущее.

Вследствие этого, хотя некие идеальные системы продолжают жить в циклическом времени, многие физические процессы в естественном мире повинуются линейной временной схеме. И проблема «циклическое время против линейного времени» являлась предметом дискуссий для ученых более тысячелетия.

  • Читать дальше
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: