Шрифт:
Несмотря на то что такое объяснение может удовлетворить большинство, мы должны подробней разобрать этот вопрос, потому что он напрямую выводит нас на тему здоровья и болезней, а ведь ради нее вы и пробираетесь сквозь дебри научного материала.
Давайте начнем с начальной фазы метаболизма глюкозы, которая называется гликолизом и происходит в гиалоплазме [5] . Именно здесь глюкоза благодаря серии химических реакций превращается в пируват (соль пировиноградной кислоты). Пируват транспортируется в митохондриальный матрикс, где еще одна цепочка реакций превращает его в ацетилкофермент А [6] . После этого начинается настоящая магия. Дело в том, что ацетилкофермент А дает старт циклу Кребса, в ходе которого происходит финальное высвобождение энергии из пищи, в результате чего синтезируются выдыхаемый нами углекислый газ (СО2) и два типа молекул: НАДН и ФАДН2. При этом расщепление находящихся в пище жирных кислот высвобождает ацетил-коэнзим А, который опять поступает в цикл Кребса.
5
Гиалоплазма – жидкая растворимая часть цитоплазмы клетки, заполняющая пространство между органеллами.
6
Ацетилкофермент А (ацетил-коэнзим А, ацетил-КоА) – важное для обмена веществ соединение, используемое во многих биохимических реакциях. Его главная функция – доставлять атомы углерода с ацетил-группой в цикл трикарбоновых кислот, чтобы те были окислены с выделением энергии.
Следующая фаза называется окислительным фосфорилированием и происходит во внутренней мембране митохондрии. При окислительном фосфорилировании происходит перенос несколькими белковыми комплексами электронов от НАДН и ФАДН2 по ЭТЦ к соединениям-акцепторам в ходе окислительно-восстановительных реакций. В конце ЭТЦ электроны попадают на кислород и восстанавливают его до воды. Энергия, выделяющаяся при каждом этапе движения электронов по дыхательной электрон-транспортной цепи, используется для транспорта протонов (атомов водорода) через матрикс в межмембранное пространство. Это приводит к высокой концентрации протонов между мембранами и их низкой концентрации в матриксе. Разница между уровнями концентрации протонов называется протонным (электрохимическим) градиентом и является потенциальной энергией. Эта энергия высвобождается при возвращении протонов обратно в митохондриальный матрикс под влиянием электрохимического градиента. Возвращение осуществляется через особые каналы, в которых происходит синтез молекулы аденозинтрифосфата (АТФ), представляющей собой универсальный источник энергии и использующейся всеми живыми клетками. Все это можно представить себе так: вода (протоны) перекачивается в резервуар (межмембранное пространство) и накапливается перед плотиной (внутренней мембраной), стремясь вернуться в матрикс. По мере того как вода течет сквозь плотину по специальным каналам, она приводит в движение турбины, в результате чего высвобождается гидроэлектрическая энергия (рис. 1.2).
Это очень эффективный процесс по извлечению скрытой в пище энергии для синтеза АТФ. Все подлинно жизненно важные действия (дыхание и поглощение пищи) осуществляются для того, чтобы обеспечить митохондрии материалом для производства энергии. Если занять депрессивно-редукционистскую позицию, то мы живем, чтобы давать работу нашим митохондриям.
Рис. 1.2. Процесс производства энергии в митохондриях подчиняется тем же базовым принципам, что и работа гидроэлектростанции. По мере того как вода (протоны) перекачивается в резервуар (межмембранное пространство) и накапливается перед плотиной (внутренней мембраной), давление на нее становится все более сильным. Оно заставляет воду пробиваться сквозь находящиеся в плотине каналы, что приводит в действие генерирующие энергию турбины
Игра в «горячую картошку»: электрон-транспортная цепь (ЭТЦ)
В митохондриях находятся четыре мембраносвязанных комплекса: три из них – это протонные насосы. Каждый характеризуется чрезвычайно сложной структурой, встроенной во внутреннюю мембрану. На рис. 1.3 показаны компоненты ЭТЦ. Следуя за потоком электронов (е) вниз по ЭТЦ, можно увидеть, куда направляются протоны (H). Комплекс I забирает электроны у молекул НАДН и передает их коферменту Q10 (CoQ10, обозначенному на рисунке как Q). CoQ10 также получает электроны от комплекса II. Затем CoQ10 передает электроны комплексу III, который, в свою очередь, передает их цитохрому c. Цитохром с передает электроны комплексу IV, который принимает их и два иона водорода (H) и вступает в реакцию с кислородом, что приводит к образованию воды (H2O).
Рис. 1.3. Дыхательная электрон-транспортная цепь (ЭТЦ), включая АТФ-синтазу. Цикл Кребса (ЦТК) производит НАДН и ФАДН2, которые включаются в ЭТЦ на этапе первого и второго комплексов соответственно. Оба комплекса передают электроны (е) коферменту Q10, после чего электроны продолжают свой путь до тех пор, пока не вступают в реакцию с кислородом (О2), для того чтобы синтезировать воду (H2O). Протоны (H+) накачиваются комплексами I, III и IV, создавая градиент концентрации протонов, или протонный градиент. Затем протоны возвращаются с помощью АТФ-синтазы, и в результате синтезируется АТФ
Важно понимать, что передача электронов вниз по ЭТЦ не всегда является на сто процентов эффективной. Небольшая часть электронов сбивается с курса и вовлекается в молекулярную игру «горячая картошка», в результате чего происходит их утечка в матрикс. Такие электроны слишком рано вступают в реакцию с кислородом, что приводит к формированию супероксида – потенциально опасного свободного радикала. Свободные радикалы – это молекулы с высокой реакционной способностью. Они играют огромную роль в окислительном стрессе, приводящем к развитию множества болезней и даже старению как таковому (об этом я вкратце расскажу ниже).
При отравлении угарным газом этот токсин подменяет кислород в качестве конечного пункта следования электронов, спускающихся по ЭТЦ. Если это происходит, то клеточное дыхание останавливается, так как электроны не могут двигаться дальше. Если угарный газ не удалить из клетки, митохондрии умрут, что в свою очередь приведет к смерти клеток, а затем к гибели всего организма.
Тем, кто знаком с концепцией свободных радикалов, может быть интересно узнать, что электрон-транспортная цепь – это основной участок производства эндогенных свободных радикалов (то есть свободных радикалов, возникающих в самом организме, в отличие от внешних вредоносных факторов, таких как промышленные выбросы). Все это вскоре соберется в единый пазл. А пока давайте закончим обзор ЭТЦ и ее компонентов.
Известный также как НАДН-дегидрогеназа, комплекс I представляет собой большую молекулу, состоящую из 46 белковых субъединиц. Он забирает два электрона у НАДН и передает их жирорастворимому коферменту убихинону (окисленному CoQ10, или просто Q). В рамках двухшагового процесса CoQ10 восстанавливается до убихинола (QH2) и проталкивает 4 протона (H) через мембрану, создавая таким образом протонный градиент. Это – основной участок в ЭТЦ, откуда электроны ускользают, чтобы сформировать вредоносные супероксиды.