Вход/Регистрация
Трещина в мироздании
вернуться

Даудна Дженнифер

Шрифт:

Ученые назвали этот новый подход к манипуляции с генами направленным воздействием на гены. Сегодня этот метод известен под другим именем: редактирование генома.

Потенциал этой технологии для генетических исследований был невероятно заманчив. Однако Смитис знал, что гомологичная рекомбинация может быть также использована и в качестве терапии. Если бы ученые смогли провести аналогичное направленное воздействие на гены в стволовых клетках пациентов, страдающих от серповидноклеточной анемии, то мутировавший ген бета-глобина можно было бы заменить на нормальную, здоровую последовательность. Открытие Смитиса было сделано в рамках экспериментального подхода, однако в один прекрасный день оно потенциально могло быть использовано для лечения заболеваний.

Другие лаборатории также вступили в конкуренцию за усовершенствование этой техники направленного воздействия на гены. Одной из них была лаборатория Капекки. В 1986-м, когда я была на втором курсе магистратуры, он показал, что гомологичная рекомбинация достаточно точна для того, чтобы исправлять даже точечные мутации в геноме и корректировать недостаточность ферментов в клетках [30] . Два года спустя Капекки предложил общую стратегию направленного воздействия на любой ген с известной последовательностью нуклеотидов в любом геноме. Он также предположил, что гомологичную рекомбинацию можно использовать не только для исправления и “ремонта” генов, но и для их инактивации в исследовательских целях [31] ; “выключая” гены и наблюдая, что получится в результате, ученые могли определять функции этих генов.

30

K. R. Thomas, K. R. Folger, and M. R. Capecchi, “High Frequency Targeting of Genes to Specific Sites in the Mammalian Genome”, Cell 44 (1986): 419–428.

31

S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the Proto-Oncogene Int-2 in Mouse Embryo-Derived Stem Cells: A General Strategy for Targeting Mutations to Non-Selectable Genes”, Nature 336 (1988): 348–352.

Редактирование генома посредством гомологичной рекомбинации

К тому времени как я завершила работу над своей диссертацией на соискание степени доктора философии в конце 1980-х, направленное воздействие на гены широко применялось для редактирования ДНК в культурах клеток мышей и человека и даже в живых мышах. Важная работа, проведенная в лаборатории Мартина Эванса, продемонстрировала, что, направленно воздействуя на гены в эмбриональных стволовых клетках мышей и затем вводя эти измененные стволовые клетки обратно в мышиные эмбрионы, ученые могут создавать живых мышей с “дизайнерскими” изменениями. Важнейшие открытия, совершенные Капекки, Смитисом и Эвансом, впоследствии, в 2007 году, были удостоены Нобелевской премии по физиологии или медицине.

Впрочем, несмотря на свой колоссальный потенциал, редактирование генома поначалу больше подходило для фундаментальных исследований, чем для применения в лечении заболеваний у человека. Для ученых, исследующих генетику млекопитающих и пытающихся найти способы, которыми можно было бы выявить функции различных генов, метод направленного воздействия на гены в корне менял все. Однако исследователи-медики с настороженностью относились к использованию этого метода на людях, поскольку, несмотря на весь свой потенциал, гомологичная рекомбинация совсем не оправдывала ожиданий в том, что касалось лечения.

Возможно, самым важным сдерживающим фактором была проблема негомологичной (или незаконной) рекомбинации, при которой новая ДНК интегрируется в геном случайным образом, вместо того чтобы оказаться точно у подходящей последовательности. Фактически незаконная рекомбинация, похоже, происходила почти в сто раз чаще гомологичной, и, естественно, терапевтические перспективы технологии, которая могла исправить мутировавший ген лишь в 1 % измененных клеток, а в геном остальных 99 % “вклеивала” ДНК как попало, не выглядели слишком многообещающими. Ученые разрабатывали различные изящные пути обхода этой проблемы в клеточных культурах и не теряли надежду на то, что в будущем метод удастся применить в медицине. Как заявил Капекки в начале 1990-х, “в конце концов, гомологичная рекомбинация – единственный потенциально возможный метод генной терапии человека” [32] . Однако в то время казалось, что редактирование генома – просто недостаточно совершенная технология для того, чтобы применять ее на людях.

32

J. Lyon and Peter Gorner, Altered Fates: Gene Therapy and the Retooling of Human Life (New York: Norton, 1995), 556.

В начале 1980-х, пока другие ученые были поглощены мыслями о направленном воздействии на гены в клетках человека, Джек Шостак пытался разобраться в процессе клеточного деления у дрожжей. Шостак был профессором Гарвардской медицинской школы (и затем моим научным руководителем в работе над докторской диссертацией), и его занимал фундаментальный вопрос: как вообще возможны направленное воздействие на гены и гомологичная рекомбинация? В частности, Шостак хотел понять, каким образом две цепочки ДНК из одной хромосомы могут объединяться с двумя соответствующими цепочками ДНК из второй хромосомы, обмениваться информацией, слившись на время некой промежуточной стадии, и затем разделяться вновь, заново образуя отдельные хромосомы после деления клетки.

В 1983 году, когда я все еще была студенткой Помона-колледжа в Калифорнии, Шостак на другом конце страны решил, что нашел ответ. Основываясь на результатах экспериментов по генетике дрожжей, он и его магистрантка Терри Орр-Вивер вместе с профессорами Родни Ротштайном и Фрэнком Сталем обнародовали смелую модель [33] , согласно которой провоцирующим фактором – сигналом, запускающим процесс гомологичной рекомбинации, – было разрезание одной из двух хромосом, что приводило к двуцепочечному разрыву ДНК. Согласно этой модели, двуцепочечный разрыв и освободившиеся концы ДНК на месте разрыва были особенно подвержены слиянию, а располагающиеся по бокам их последовательности с гораздо большей вероятностью могли быть вовлечены в обмен генетической информацией с соответствующей хромосомой (или, в случае редактирования генома, – с соответствующей ДНК, которую предоставлял исследователь).

33

J. W. Szostak et al., “The Double-Strand-Break Repair Model for Recombination”, Cell 33 (1983): 25–35.

К тому времени как я пришла в лабораторию Шостака в 1986 году, он уже сменил центральную повестку своих исследований на изучение роли молекул РНК на начальных этапах эволюции жизни на Земле. Однако в лаборатории мы с коллегами обсуждали модель двуцепочечных разрывов, ее изящество и тот неприкрытый скепсис, с которым она была встречена в научном сообществе. Но с течением времени становилось все яснее, что эта модель согласуется с большим количеством экспериментальных данных. Механизм репарации двуцепочечных разрывов казался логичным не только в случае процесса гомологичной рекомбинации при формировании яйцеклеток и сперматозоидов, но и при рекомбинации, происходящей каждый раз, когда была повреждена ДНК. Все клетки подвержены разрушительным для ДНК воздействиям, будь то рентгеновское излучение или канцерогены, и надо отметить, что клетки весьма эффективно справляются с репарацией таких разрывов, не теряя при этом генетической информации. Согласно модели Шостака, этот процесс репарации зависел от возможности хромосом обмениваться фрагментами посредством гомологичной рекомбинации, и именно поэтому наличие двух копий хромосом является выгодной эволюционной стратегией. Любое повреждение одной из хромосом можно репарировать, просто скопировав соответствующую последовательность со второй хромосомы.

  • Читать дальше
  • 1
  • ...
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • ...

Ебукер (ebooker) – онлайн-библиотека на русском языке. Книги доступны онлайн, без утомительной регистрации. Огромный выбор и удобный дизайн, позволяющий читать без проблем. Добавляйте сайт в закладки! Все произведения загружаются пользователями: если считаете, что ваши авторские права нарушены – используйте форму обратной связи.

Полезные ссылки

  • Моя полка

Контакты

  • chitat.ebooker@gmail.com

Подпишитесь на рассылку: